JUN 08, 2017 12:00 PM PDT

Improved CRISPR Cas9 Editing of Pluripotent Stem Cells Utilizing the Latest Technologies from Thermo Fisher Scientific

Speakers
  • Senior Staff Scientist, Cell Biology, Thermo Fisher Scientific
    Biography
      Dr. Newman joined the Primary and Stem Cell Systems Division Life Technologies in 2009 and initially focused on isolation and expansion of human primary cells for development of 3D organotypic models. Currently, Dr. Newman continues to support primary cell efforts and works on development of next generation stem cell culture and differentiation systems, enabling researchers to efficiently culture, expand, cryopreserve, and differentiate their stem cells to various cellular lineages. She received a Ph.D. at the University of Iowa from the lab of Dr. Madeline Shea, focusing on ligand induced allostery of calmodulin and its impact on regulation of the Ryanodine Receptor Type 1. Subsequently, she completed postdoctoral training in the lab of Dr. Ken Prehoda at the University of Oregon, studying the role of intramolecular interactions in regulating cell signaling cascades in the process of assymetric stem cell division.

    Abstract:

    The emergence of technology for development of induced pluripotent stem cells (iPSCs) from somatic cells, such as skin and blood cells, has resulted in the ability of researchers to have limitless pool of iPSCs retaining the genetic make-up of the somatic cells from which they were derived.  In conjunction with tools for downstream gene editing, such as clustered regularly interspaced short palindromic-repeat (CRISPR)-Cas9 nuclease systems, iPSCs can be used generate (1) knock-outs to study the impact of genes on cellular processes, or (2) knock-ins to assess the impact of reversal of point mutations on diseased states, or furthermore for generation of reporter cell lines.  Briefly, CRISPR-Cas9 systems provide simple and efficient site-specific targeting that is accomplished by guiding Cas9 nuclease via a variable 20-base guide RNA sequence to the site for formation of a double stranded break. This break can then be repaired via non-homologous end joining (NHEJ) where small insertions or deletions are made in the gene of interest to knock-out its function or via homology-directed repair (HR) in which single nucleotide changes or knock-ins can be accomplished using a donor DNA template for repair.  Together iPSCs and CRISPR-Cas9 systems provide researchers with effective in vitro tools for assessing gene function, disease modeling, and regenerative therapy.  In this webinar, we discuss new technologies available from Thermo Fisher Scientific which support (1) efficient delivery of CRISPR Cas9 to PSCs, (2) improve cell survival following transfection while maintaining normal PSC properties, and (3) improve clonal cell survival following low density seeding of 1, 3, or 5 cells per well of 96-well plate.


    Show Resources
    You May Also Like
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    JUN 05, 2019 05:00 PM CEST
    C.E. CREDITS
    JUN 05, 2019 05:00 PM CEST
    DATE: June 5, 2019TIME: 8:00am PDT, 11:00am EDT, 5:00pm CEST Eukaryotic cell cultures respond to the most subtle influence. Apart from the risk of contamination, minimal chan...
    JUN 19, 2019 10:00 AM PDT
    JUN 19, 2019 10:00 AM PDT
    DATE: June 19, 2019TIME: 10:00am PDT, 1:00pm EDT As we develop new methods to create more biologically relevant models for research in understanding disease etiology and in...
    AUG 27, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 09:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    JUN 18, 2019 04:00 PM CEST
    C.E. CREDITS
    JUN 18, 2019 04:00 PM CEST
    DATE: June 18, 2019TIME: 7:00am PDT, 10:00 EDT, 4:00pm CET PSCs represent an important tool in a wide range of applications, including basic research, disease modeling, drug...
    NOV 18, 2019 08:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 18, 2019 08:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: November 18, 2019TIME: 8:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    Loading Comments...
    Show Resources