APR 27, 2018 10:00 AM PDT

Investigating DNA repair mechanisms in hypoxic brain tumours and the link to treatment resistance

Speaker

Abstract

DATE: April 27, 2018
TIME: 10:00am PDT, 1:00pm EDT

Glioblastoma (GBM) and Medulloblastoma (MB) are the most common adult and paediatric brain tumours, both of which can have devastating consequences. Patients diagnosed with GBM have a life expectancy of around 15 months, whereas, for MB, the survival rate is higher. However, commonly used treatments for MB can have a negative impact on a child’s developing brain. Therefore, it is imperative that further research is conducted to understand the complex cell biology of these tumours to enable us to improve current treatment protocols.

Both GBM and MB are defined as hypoxic as their O2 levels are lower than the physiological 5% O2 found in the brain. Tumour hypoxia is known to enhance the ability cancer cells to invade other tissues and form tumours at secondary sites (metastasis), as well as causing resistance to chemotherapy and radiotherapy. Currently, little is known about how the chronic hypoxic tumour environment causes long-lasting cellular adaptations within tumour cells resulting in their resistant phenotype.

To further understand this, our lab investigates how long-term hypoxia exposure impacts DNA repair mechanisms within brain tumour cell lines, and how these changes can affect the response of cells to DNA damaging agents such as chemotherapeutic drugs and X-ray irradiation. We use a variety of complementary techniques including cell culture, gene expression analysis and advanced confocal microscopy.

We have observed down-regulation of key DNA repair proteins induced by hypoxia, causing the cells not to ‘recognise' certain types of DNA damage. Therefore, the cells are less likely to trigger apoptosis after cancer treatment. Additionally, further changes in DNA repair genes may cause a reduction in the efficiency of DNA repair, influencing the cell response to cancer therapy. It is hoped that gaining a deeper understanding of the effect of hypoxia in GBM and MB will aid in the development of more successful treatment methods.

Learning Objectives:

  • Understand how hypoxia can cause changes to DNA repair mechanism in cultured brain tumour cells
  • Understand how we can use advanced microscopy techniques to determine the functional impact of hypoxia-induced changes in DNA repair mechanism.

 


Show Resources
You May Also Like
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
MAR 16, 2021 10:00 AM PDT
C.E. CREDITS
MAR 16, 2021 10:00 AM PDT
Date: March 16, 2021 Time: 10:00am (PST) Scientific progress and breakthroughs today are often too expensive for most institutions to acquire. Each year, the National Institutes of Health (N...
APR 21, 2021 5:00 PM CEST
APR 21, 2021 5:00 PM CEST
Date: April 21, 2021 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Spatial Answers Trilogy - Spatial Answers in Immunology Immunology Researchers share their Spatial Discoveries in SARS-C...
MAR 18, 2021 8:00 AM PDT
C.E. CREDITS
MAR 18, 2021 8:00 AM PDT
DATE: March 18, 2021 TIME: 8:00am PDT Sequencing of bulk cells, single cells, and nuclei is opening doors in the understanding of complex biological processes....
JUL 15, 2021 9:00 AM PDT
Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
JUL 15, 2021 9:00 AM PDT
Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
Date: July 15, 2021 Time: 9:00am (PDT), 12:00pm (EDT) The Pisces workflow robust, easy-to-use, end-to-end multi-omics solution for highly multiplexed targeted Spatial RNA analysis. VeranomeB...
APR 27, 2018 10:00 AM PDT

Investigating DNA repair mechanisms in hypoxic brain tumours and the link to treatment resistance


Specialty

Cancer Research

Cell Biology

Molecular Biology

Biotechnology

Cancer Therapeutics

Biochemistry

Genetics

Dna

Cell Culture

Cancer Diagnostics

Genomics

Biomarkers

Bioinformatics

Gene Expression

Immunology

Geography

North America38%

Asia21%

Europe20%

South America6%

Africa3%

Registration Source

Website Visitors53%

Social Media Promotions24%

Email Promotions13%

WAVE Newsletter Promotion7%

Client/Sponsor Promotions2%

Website Banners1%

Job Title

Student29%

Research Scientist13%

Educator/Faculty11%

Medical Laboratory Technician8%

Medical Doctor/Specialist8%

Executive6%

Facility/Department Manager5%

Scientist5%

Post Doc4%

Lab Management3%

Biologist2%

Clinical Laboratory Scientist2%

QC/QA1%

Marketing/Sales1%

Organization

Academic Institution23%

Research Institute9%

Hospital6%

Medical School6%

Clinical Laboratory5%

Biotech Company4%

Government4%

Medical Center4%

Ambulatory Care3%

Pharmaceutical Company3%

Industrial Company3%

Life Science Company1%

Other8%


Show Resources
Loading Comments...
Show Resources
Attendees
  • See more