MENU
JUN 20, 2019 10:30 AM PDT

The Massively Parallel Sequencing (MPS) Revolution

Speaker

Abstract

The development of automated DNA sequencers utilizing Sanger sequencing and capillary electrophoresis made it possible to develop the first draft sequences of the human genome. The cost of doing this was hundreds of millions of dollars. However, the advent of technologies which could generate sequences for hundreds of thousands of DNA fragments simultaneously based up MPS heralded a revolution in sequence capability. All first generation MPS platforms utilize one of three approaches to amplify individual DNA molecules to a high copy number followed by sequence interrogation of the original short DNA molecules. The most successful platform for MPS was developed by the company Illumina and they have increased sequence output from 1 gigabase (Gb) to over 6 terrabases (Tbs) in less than 13 years. Currently the cost for generating sufficient DNA sequence for whole genome sequencing (WGS) of an individual human is just $375. However, the total cost for WGS is considerably higher when one factors in library preparation, sequencing, assembling and interpreting that genome sequence, and data storage. There is an alternative platform developed by Complete Genomics based upon a non-PCR based technology to amplify DNA templates. This platform is now being utilized by BGI and they have a machine which is capable of generating 7 Tbs of sequence data per run. On this platform the total cost for WGS is now just $600 and BGI is developing larger machines in the hope of bringing WGS total costs down to just $100. First generation MPS can now be utilized for WGS, but also for whole exome sequencing, targeted genome sequencing, transcriptome sequencing, methylation sequencing as well as metagenomic sequencing. All of these will completely transform research and its’ clinical translation. Second generation MPS is based upon the analysis of single unamplified DNA molecules and can generate DNA sequences that can be 100 kilobases in length or greater. In my talk I will discuss the history of first generation MPS and how this revolution represents an important technological singularity.

Learning Objectives: 

1. To understand the revolution that has occurred in DNA sequencing based upon technologies that utilize massively parallel sequencing
2. To understand how these technologies will completely transform clinical practice.


Show Resources
You May Also Like
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
APR 01, 2021 8:00 AM PDT
C.E. CREDITS
APR 01, 2021 8:00 AM PDT
Date: April 01, 2021 Time: 8:00am (PST), 11:00am (EST) Generating therapeutic antibodies is far more challenging than obtaining antibodies that merely recognize their targets. Engineering po...
JUL 15, 2021 8:00 AM PDT
C.E. CREDITS
JUL 15, 2021 8:00 AM PDT
Date: July 15, 2021 Time: 8:00am (PDT), 11:00am (EDT) High dimensional full spectrum flow cytometry grants unprecedented access to previously unattainable parameters in cellular biology. Flu...
SEP 17, 2021 12:00 PM CST
C.E. CREDITS
SEP 17, 2021 12:00 PM CST
Date: September 16, 2021 Time: 9:00pm (PDT), 12:00am (EDT) 3D cellular models like organoids and spheroids offer an opportunity to better understand complex biology in a physiologically rele...
JUN 20, 2019 10:30 AM PDT

The Massively Parallel Sequencing (MPS) Revolution


Specialty

Molecular Biology

Protein

Immunology

Brain

Research

Dna

Biochemistry

Gene Expression

Neuroscience

Microbiology

Genomics

Animal Research

Cell

Bacteria

Biomarkers

Geography

Asia60%

North America40%

Registration Source

Website Visitors100%

Job Title

Educator/Faculty40%

Biologist20%

Research Scientist20%

Medical Laboratory Technician20%

Organization

Academic Institution60%

Manufacturer - Other20%

Research Institute20%


Show Resources
Loading Comments...
Show Resources