SEP 13, 2018 1:30 PM PDT

Mechanisms of Antimicrobial Bioconversion by Environmental and Host-Associated Bacteria

Speaker

Abstract

The soil microbiome can produce, resist, or degrade antibiotics and even catabolize them. Resistance genes are widely distributed in the soil and may act as a reservoir for pathogen antibiotic resistance. Work done in the Dantas lab has identified high diversity of genes encoding antibiotic resistance across all antibiotic classes, but generally these genes are not at great risk of mobilization to pathogens. However, the sub-group of resistant, culturable Proteobacteria show both resistance to high concentrations of antibiotics and resistance across many antibiotic classes. These highly resistant Proteobacteria are related to human pathogens, and show evidence of increased horizontal gene transfer of resistance genes. Interestingly, many of these Proteobacteria are not only antibiotic resistant, they have also been found to be capable of antibiotic catabolism. Little is known about the enzymes, mechanisms, and pathways involved in antibiotic catabolism. We describe a pathway for penicillin catabolism in four strains of Proteobacteria. Genomic and transcriptomic sequencing revealed β -lactamase, amidase, and phenylacetic acid catabolon upregulation. Knocking out part of the phenylacetic acid catabolon or an apparent penicillin utilization operon (put) resulted in loss of penicillin catabolism in one isolate. A hydrolase from the put operon was found to degrade in vitro benzylpenicilloic acid, the β -lactamase penicillin product. To test the generality of this strategy, an Escherichia coli strain was engineered to co-express a β -lactamase and a penicillin amidase or the put operon, enabling it to grow using penicillin or benzylpenicilloic acid, respectively. Elucidation of additional pathways may allow bioremediation of antibiotic-contaminated soils and discovery of antibiotic-remodeling enzymes with industrial utility.

Learning Objectives: 

1. Antibiotics and pharmaceuticals are not privileged molecules, they can be modified or catabolized by microbes. 
2. Metabolism of these molecules in unexpected ways can impact human health.


Show Resources
You May Also Like
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
MAR 16, 2022 8:00 AM PDT
C.E. CREDITS
MAR 16, 2022 8:00 AM PDT
Date: March 16, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CET) Handling of potent and/or hazardous substances is commonplace in sev.....
OCT 11, 2022 8:00 AM PDT
C.E. CREDITS
OCT 11, 2022 8:00 AM PDT
Date: October 11, 2022 Time: 8:00am (PDT), 11:00pm (EDT), 5:00pm (CEST) Multiomic profiling of cell populations at single-cell resolution is revolutionizing scientists’ understanding o...
MAR 23, 2022 11:00 AM PDT
MAR 23, 2022 11:00 AM PDT
Date: March 23, 2021 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEDT) In this presentation, Dr. Middleton will review the development and deployment of large-scale saliva-based COVID-19 test...
SEP 13, 2022 8:00 AM PDT
SEP 13, 2022 8:00 AM PDT
Date: September 13, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Preparedness against pandemic diseases demands rapid-response vaccine technology and ready-to-use analytical methods...
SEP 13, 2018 1:30 PM PDT

Mechanisms of Antimicrobial Bioconversion by Environmental and Host-Associated Bacteria



Show Resources
Loading Comments...
Show Resources