OCT 03, 2018 12:00 PM PDT

Mechanisms of CRISPR-Cas Systems: From Adaptive Immunity to Biotechnology

Presented at: CRISPR 2018
Speaker
  • Assistant Professor, Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University
    Biography
      Dipali Sashital is an assistant professor in the Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology at Iowa State University. She received her PhD from the University of Wisconsin, Madison. Following postdoctoral studies with Jennifer Doudna at University of California, Berkeley and Jamie Williamson The Scripps Research Institute, La Jolla, Dr. Sashital joined the faculty at Iowa State in January, 2014. The Sashital lab studies the mechanisms of CRISPR-Cas adaptive immunity using a combination of genetic, biochemical, biophysical and structural tools.

    Abstract

    All forms of life require immune systems to stave off infection from viruses and other pathogens. In bacteria and archaea, clustered regularly interspaced short palindromic repeats (CRISPR) arrays and CRISPR-associated (Cas) proteins provide adaptive immunity against invading DNA from bacteriophages and plasmids. During infection, host cells adapt by storing short segments of foreign DNA in CRISPR arrays, providing heritable molecular memories of the infection. CRISPR-derived RNAs guide Cas complexes to bind and cleave the specific matching region of the foreign nucleic acids, thus neutralizing the infection. The unique, programmable DNA cleavage activity of CRISPR-Cas systems has been widely adapted for genome editing. In addition to providing revolutionary biotechnological tools, fundamental research into CRISPR/Cas systems has deepened our understanding of the complex molecular warfare that occurs between bacteria and their invaders. I will present recent mechanistic insights into CRISPR-Cas systems that reveal how bacteria adapt to rapidly evolving viruses.

    Learning Objectives: 

    1. An overview of the basic biology of CRISPR-Cas adaptive immune systems
    2. The importance of specificity during CRISPR-Cas immunity
    3. How guide RNA sequences can affect immunity and how these sequences are acquired in bacteria


    Show Resources
    You May Also Like
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    OCT 08, 2020 7:00 AM PDT
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    SEP 03, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 03, 2020 9:00 AM PDT
    DATE: September 3, 2020 TIME: 09:00am PT, 12:00pm ET xxx Learning Objectives: xxx Webinars will be available for unlimited on-demand viewing after live event. LabRoots is approved as a provi...
    Loading Comments...
    Show Resources
    Attendees
    • See more