MAY 11, 2016 1:30 PM PDT

Microfluidic Single Cell Exome-seq and RNA-seq analysis of Tumor Composition

C.E. Credits: CEU
Speaker

Abstract

Human breast tumors have been shown to exhibit extensive inter- and intra-tumor heterogeneity. While recent advances in genomic technologies have allowed us to deconvolute this heterogeneity, few studies have addressed the functional consequences of diversity within tumor populations. We performed single cell RNA and exome sequencing of treatment resistant breast tumor derived xenografts (PDX) to identify population structure. Genes differentially expressed between these subpopulations are involved in proliferation and differentiation. Microfluidic whole genome amplification followed by whole exome capture of single cells, identified driver mutations as well as a number of sub-clonal mutations that are being investigated further. Loss of heterozygocity was observed in 16 TCGA cancer driver genes and novel mutations in 7 known cancer driver genes. Careful comparison of the exome sequencing data allowed the association of driver gene mutation prevalence with tumor progression. These findings are important in our understanding the functional consequences of intra-tumor heterogeneity with respect to clinically important phenotypes such as invasion, metastasis and drug-resistance.

Learning Objectives:

  • Develop an understanding of the technology behind single cell genomics 
  • Understand the data analysis and quality control processes for single cell data
  • Understand single cell expression profiling approaches using high throughput quantitative PCR
  • Understand the relevance of single cell genomics in the development of personalized medicine approaches

Show Resources
You May Also Like
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
JUN 21, 2022 6:00 AM PDT
JUN 21, 2022 6:00 AM PDT
Date: June 21, 2022 Time: 6:00am (PDT), 9:00am (EDT), 3:00pm (CEST) The global understanding and practice of medicine is currently undergoing a revolutionary change. This shift to precision...
AUG 16, 2022 11:00 AM PDT
AUG 16, 2022 11:00 AM PDT
Date: August 16, 2022 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEST) Understanding genomic variation in the context of cancer is paramount to identifying disease drivers and informing pers...
OCT 11, 2022 8:00 AM PDT
C.E. CREDITS
OCT 11, 2022 8:00 AM PDT
Date: October 11, 2022 Time: 8:00am (PDT), 11:00pm (EDT), 5:00pm (CEST) Multiomic profiling of cell populations at single-cell resolution is revolutionizing scientists’ understanding o...
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...
MAY 11, 2016 1:30 PM PDT

Microfluidic Single Cell Exome-seq and RNA-seq analysis of Tumor Composition

C.E. Credits: CEU


Show Resources
Loading Comments...
Show Resources