Microphysiological Systems for Human Focused Drug Discovery

C.E. Credits: P.A.C.E. CE Florida CE
Speakers
  • Director, Biology, CN Bio Innovations Limited
    Biography
      Dr Tomasz Kostrzewski is Director of Biology at CN Bio with more than 10 years of experience in molecular and cellular biology research. Prior to joining CN Bio, he worked at Imperial College London in the Department of Life Sciences studying immune cell development and stem cell differentiation. At Imperial College London he completed both an MRes and PhD in the department of Cell and Molecular Biology. He has significant experience in advanced (3D) mammalian cell culture, gene expression analysis and immune cell function. Additionally, he has previous experience of working in biopharmaceutical drug discovery and development with GlaxoSmithKline. In 2017, he was promoted to head of biology at CN Bio and is responsible for biological model development and collaborative research projects. TK has published more than seven peer-reviewed scientific articles in the last three years.

    Abstract:

    Microphysiological systems (MPS), also known as organ-on-chips, are small scale in vitro cell cultures which mimic facets of tissue or organ level function. MPS frequently utilise primary human cells, often cultured in 3D, to obtain highly functional, physiologically relevant models. MPS can be utilized alone, but can also be connected through fluidic circuits to create advanced multi-MPS that can model the interactions between organ systems, allowing greater analysis of molecular pathways and disease mechanisms.

    Most current in vitro liver models are simple mono-cultures of hepatocytes or use hepatic cell lines and do not have the complexity to analyse the interactions between different tissue types and determine how these interactions drive specific pathologies. We have developed a novel system for the in vitro culture of hepatocytes in a perfused three-dimensional format, with/without a separate co-culture allowing interactions to be studied with a second MPS. The model of the human liver, contains multiple primary cell types, which can be cultured together for several weeks and maintain their phenotype and metabolic activity. The MPS platform provides a tool to study in greater detail the key interactions between the gut, the lungs, the liver and the immune system that drive pathologies including steatohepatitis, hepatocellular carcinoma and viral hepatitis.

    Learning Objectives:

    1. Introduction to the field of microphysiological systems

    2. Demonstrate use of MPS for efficacy, tox and ADME applications


    Show Resources
    You May Also Like
    SEP 05, 2019 4:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 4:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    NOV 18, 2019 7:00 AM PST
    C.E. CREDITS
    NOV 18, 2019 7:00 AM PST
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    NOV 21, 2019 9:00 AM PST
    C.E. CREDITS
    NOV 21, 2019 9:00 AM PST
    DATE: November 21, 2019TIME: 9:00am PST, 12:00pm EST Multiple Myeloma is a disease of terminally differentiated plasma cells with the massive production of monoclonal immunoglobu...
    Loading Comments...
    Show Resources