NOV 14, 2018 3:00 PM PST

Modeling Inflammation and Fibrosis in Humans with PSC-derived Steatohepatitis Liver Organoids

Speakers
  • Associate Director, CuSTOM, Professor and Assistant Professor, Cincinnati Children's Hospital Tokyo Medical and Dental University Yokohama City University, Principal Investigator, Takeda-CiRA
    Biography
      Dr. Takebe is an Associate Director of Center for Stem Cell and Organoid Medicine (CuSTOM) at the Cincinnati Children's Hospital Medical Center and Professor at Yokohama City University, and Tokyo Medical and Dental University, Japan. He serves as Board of Directors at International Society of Stem Cell Research (ISSCR). His lab investigates the mechanisms of human organogenesis, and develops mini-organ technologies from human stem cells - namely organ bud based approaches. He is applying iPSC-liver buds into drug discovery study as well as transplant application - for patients with a rare congenital metabolic disorder, ultimately expanding the clinical indications to diseases like liver cirrhosis.

    Abstract:

    Human organoid systems recapitulate in vivo organ architecture, yet fail to capture complex pathologies such as inflammation and fibrosis. Here we developed multi-cellular human liver organoids (HLO) from 11 different healthy and diseased PSC lines that display essential features of steatohepatitis. Single-cell-level analysis revealed steatohepatitis organoids exhibited persistent hepatic steatosis, followed by progressive activation of pro-inflammatory and fibrotic lineages. Interestingly, expression of the steatohepatitis phenotype correlates with the presence of clinically significant GWAS factors: PNPLA3, GCKR and TM6SF2. We developed an organoid-level readout with atomic force microscopy, and demonstrated that organoid stiffening reflects the fibrosis severity. Furthermore, organoid model of an iatrogenic parental nutrition associated liver disease (PNALD) identified obeticholic acid as effective in preventing pathology progression, suggesting the potential repurposing for PNALD. The presented key methodology and preliminary results offer a new method for studying human precision for inflammation and fibrosis, facilitating the discovery of effective treatments.


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    AUG 27, 2019 9:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 9:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    SEP 05, 2019 4:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 4:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    FEB 26, 2020 9:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    NOV 18, 2019 7:00 AM PST
    C.E. CREDITS
    NOV 18, 2019 7:00 AM PST
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    Loading Comments...
    Show Resources