MAY 10, 2018 6:00 AM PDT

Multiplexed Precision Genome Editing with Trackable Genome-Integrated Barcodes in Yeast

C.E. Credits: CEU
Speaker
  • Postdoctoral Scholar, Department of Genetics, Stanford University
    Biography
      Kevin obtained his Ph.D. at UCLA in the laboratory of Guillaume Chanfreau, where he studied RNA biology and developed high-throughput sequencing methods to map RNA degradation intermediates genome-wide. He is currently a National Research Council (NRC) postdoctoral associate in the laboratories of Dr. Lars Steinmetz at Stanford University and Dr. Marc Salit at the the Joint Initiative for Metrology in Biology (JIMB), a joint institute between Stanford University and the National Institute of Standards and Technology (NIST). Kevin works on developing high-throughput precision genome editing technologies with CRISPR/Cas9 to enable dissecting the genetic architecture underlying complex cellular phenotypes.

    Abstract

    Our understanding of how genotype controls phenotype is limited by the scale at which we can precisely alter the genome and assess the phenotypic consequences of each perturbation. In this presentation I will highlight a CRISPR/Cas9-based method in S. cerevisiae for multiplexed accurate genome editing with short, trackable, integrated cellular barcodes (MAGESTIC). MAGESTIC uses array-synthesized oligonucleotides encoding guide RNA-donor DNA pairs with a sophisticated cloning strategy for plasmid-based high-throughput editing. By linearizing the guide-donor plasmid in vivo concomitant with integration at a genomic barcode locus, MAGESTIC circumvents problems associated with post-editing plasmid barcode loss and enables robust phenotyping with one-to-one barcode-to-cell correspondence. We demonstrate that editing efficiency can be increased >5-fold by actively recruiting donor DNA directly to the site of breaks using the LexA-Fkh1p fusion protein. As a proof of principle, we performed saturation editing of the essential gene SEC14 and identified amino acids critical for chemical inhibition of lipid signaling. We also constructed thousands of natural genetic variants, characterized guide mismatch tolerance at the genome-scale, and ascertained that cryptic Pol III termination elements substantially reduce guide efficacy in yeast. MAGESTIC will create opportunities to unravel the genetic basis of quantitative traits, map functional residues on proteins and RNAs across entire pathways, dissect DNA regulatory elements, and build improved organisms for biotechnology.


    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    NOV 10, 2020 7:00 AM PST
    C.E. CREDITS
    NOV 10, 2020 7:00 AM PST
    DATE: November 10, 2020 TIME: 7:00am PDT, 10:00am EDT Automation can provide tremendous benefits such as increased pipetting precision and accuracy, productivity, and throughput. Numerous wo...
    MAR 16, 2021 10:00 AM PDT
    C.E. CREDITS
    MAR 16, 2021 10:00 AM PDT
    Date: March 16, 2021 Time: 10:00am (PST) Scientific progress and breakthroughs today are often too expensive for most institutions to acquire. Each year, the National Institutes of Health (N...
    MAY 10, 2018 6:00 AM PDT

    Multiplexed Precision Genome Editing with Trackable Genome-Integrated Barcodes in Yeast

    C.E. Credits: CEU

    Specialty

    Lab Automation

    Health

    Research And Development

    Earth Science

    University

    Research

    Geography

    Europe67%

    Asia33%

    Registration Source

    Website Visitors100%

    Job Title

    Student33%

    Research Scientist33%

    Medical Laboratory Technician33%

    Organization

    Research Institute67%

    Manufacturer - Other33%


    Show Resources
    Loading Comments...
    Show Resources
    Attendees
    • See more