MAR 19, 2015 1:30 PM PDT

Neural Circuits Important for Valence Processing

Presented at: Neuroscience
Speaker
  • Principal Investigator, Picowar Institute, Assistant Professor of Neuroscience, Department of Brain and Cognitive Sciences, MIT
    Biography
      Kay Tye began her education as an undergraduate research assistant at MIT from 1999-2003. She continued her studies at the University of California, San Francisco as a graduate student in Patricia Janaks lab studying electrophysiological properties of amygdala neurons both in vivo and ex vivo during reward-seeking behavior. Kay then did a short postdoc with Antonello Bonci, now the intramural director of NIDA, to study synaptic strength following reward learning, followed by a postdoc at Stanford University with Karl Deisseroth where she used novel optogenetic techniques to dissect the neural circuitry underlying psychiatric disease. Kay is currently an Assistant Professor at Massachusetts Institute of Technology in the Picower Institute for Learning and Memory, a member of the Department of Brain and Cognitive Sciences. She is also a NYSCF Neuroscience Robertson Investigator
      <br />

    Abstract

    Behaviors are motivated by two emotional valences: Seeking pleasure and avoiding pain. The ability to select appropriate behavioral responses to environmental stimuli, such as avoiding a predator or approaching a food source, is critical for survival. The perturbation of valence processing is also relevant to a number of psychiatric disease states. Within a given type of behavior, such as feeding or social interaction, motivational drives of both positive and negative valence can contribute. For example, feeding can be driven by the rewarding aspects of food consumption or by the motivation to escape the aversive state of hunger. Recent insights from our lab outline a diverse set of circuit-level processes that can modulate valence in a given behavior. We hope these basic science insights will lead to the development of more effective and specific therapeutics capitalizing on a solid understanding of neural circuitry.


    Show Resources
    You May Also Like
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    JUN 09, 2020 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2020 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: June 9, 2020 TIME: 10:00am PT, 1:00pm ET The presentation will first discuss sepsis as a disease and then explain the importance of performing diagnostic tests in the clinical labora...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    JUN 17, 2020 1:30 PM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 17, 2020 1:30 PM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Understanding the complex interplay between a pathogen and the host response is important to developing effective vaccines and therapeutics. The nCounter® Analysis System and GeoMx®...
    Loading Comments...
    Show Resources