SEP 13, 2017 6:00 AM PDT

Next-generation probiotics targeting C. difficile infection

Speakers
  • Instructor, Pathology & Immunology, Baylor College of Medicine
    Biography
      Dr. Spinler is an experienced classical microbiologist with extensive training in bacterial genetics and genomics currently serving as faculty at Baylor College of Medicine in the Texas Children's Microbiome Center. Her expertise in developing mutagenesis systems for investigations of gram-positive bacteria which has contributed to recent successes with genetics of probiotics; particularly in the area of antimicrobial production by Lactobacillus reuteri. Current research efforts combine comparative and functional genomics strategies with animal models and microbiome research to understand how individual probiotic organisms beneficially impact the larger microbiome community of the gastrointestinal tract and how these interactions protect against antibiotic-associated disease. Specifically, her research is aimed at developing adjunct probiotic therapies targeting C. difficile infection. As a probiotic researcher in a hospital-based microbiome center, Dr. Spinler has the benefit of combining her expertise with clinically relevant microbiome studies which has tremendous potential to impact our basic understanding of mechanisms of bacterial resistance and create new translational opportunities combatting antimicrobial resistance.

    Abstract:

    Adjunct probiotic therapy has the potential to decrease Clostridium difficile disease incidence and severity. After screening several potential probiotic bacteria for intrinsic resistance to C. difficile antibiotics (vancomycin, metronidazole and fidaxomicin), we determined that L. reuteri strains are ideal adjunct therapy candidates. We evaluated the ability of reuterin - a secondary metabolite produced by specific strains of L. reuteri during fermentation of the prodrug glycerol - to inhibit C. difficile growth in vitro.  We found that levels of reuterin produced by L. reuteri 17938 were more potent than vancomycin in inhibiting C. difficile growth. Using human fecal microbiota bioreactors, we showed that co-delivery of L. reuteri with glycerol is effective against C. difficile colonization of a complex-microbial community, whereas treatment with either glycerol or L. reuteri alone was ineffective.  Co-delivery of L. reuteri and glycerol changed microbial community profiles and associated metabolites consistent with glycerol fermentation and reuterin production.  Ex vivo studies showed that this combination therapy resulted in lower C. difficile burden and toxicity in stool and that this was dependent upon reuterin production. Taken together, prodrug-based adjunct therapy with probiotic L. reuteri is a viable option for preventative treatment of C. difficile infection.  

     


    Show Resources
    You May Also Like
    SEP 05, 2019 4:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 4:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    NOV 18, 2019 7:00 AM PST
    C.E. CREDITS
    NOV 18, 2019 7:00 AM PST
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    AUG 27, 2019 9:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 9:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    FEB 26, 2020 9:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    Loading Comments...
    Show Resources