MENU
JUN 20, 2019 6:00 AM PDT

Precise DNA Sequencing: A Necessity for Precision Medicine

C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Chief Scientific Officer, Pacific Biosciences
    Biography
      Jonas Korlach was appointed Chief Scientific Officer of Pacific Biosciences in July 2012. He was previously a Scientific Fellow, supporting commercial development of the PacBio RS II system and performing research aimed at developing new applications for SMRT technologies. He co-invented the SMRT technology with Stephen Turner, Ph.D., Pacific Biosciences Founder and Chief Technology Officer, when the two were graduate students at Cornell University.

      Dr. Korlach joined Pacific Biosciences as the company's eighth employee in 2004. Previously, he was a Postdoctoral Researcher at Cornell University. Dr. Korlach is the recipient of multiple grants, an inventor on 70 issued U.S. patents and 61 international patents, and an author of over 100 scientific studies on the principles and applications of SMRT technology, including publications in Nature, Science, and PNAS. In 2013, Dr. Korlach was honored by the Obama White House as an Immigrant Innovator "Champion of Change." He received both his Ph.D. and his M.S. degrees in Biochemistry, Molecular and Cell Biology from Cornell, and received M.S. and B.A. degrees in Biological Sciences from Humboldt University in Berlin, Germany.

    Abstract

    It has been noted by many in the community that for Precision Medicine to become a transformative reality, the underlying DNA and RNA sequence data have to become more precise. In my talk, I will highlight several examples how long and accurate sequence reads using SMRT Sequencing have been utilized in clinical research to uniquely inform about certain genetic dispositions, and how it has helped elucidate the underlying cause of certain diseases that had previously eluded their determination. 

    Learning Objectives: 

    1. Understand the concept of generating long and accurate sequence reads using PacBio technology
    2. Familiarize with examples for which long and accurate reads have helped elucidate genetic conditions that were previously undetermined


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    APR 07, 2020 8:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    MAY 08, 2020 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    FEB 19, 2020 11:00 AM PST
    C.E. CREDITS
    FEB 19, 2020 11:00 AM PST
    DATE: February 19, 2020TIME: 11:00am PST, 2:00pm EST...
    NOV 18, 2019 7:00 AM PST
    C.E. CREDITS
    NOV 18, 2019 7:00 AM PST
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    Loading Comments...
    Show Resources