NOV 15, 2018 8:00 AM PST

Precise Gene Editing of Human Pluripotent Stem Cells

Speakers
  • Assistant Professor, Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison
    Biography
      Krishanu Saha is an Assistant Professor in the Department of Biomedical Engineering at the University of Wisconsin-Madison. He is also a member of the Wisconsin Institute for Discovery, Carbone Cancer Center, and Stem Cell and Regenerative Medicine Center as well as the National Academies' Forum on Regenerative Medicine. Prior to his arrival in Madison, Dr. Saha studied Chemical Engineering at Cornell University and at the University of California in Berkeley. He was a Society in Science: Branco-Weiss fellow at the Whitehead Institute for Biomedical Research at MIT and in the Science and Technology Studies program at Harvard University. Major thrusts of his lab involve gene editing and cell engineering of human cells found in the retina, central nervous system and blood.

    Abstract:

    CRISPR ribonucleoproteins (RNPs) can generate programmable gene edits, however imprecise editing and efficient delivery to human stem cells are key challenges. Here we describe novel biochemical techniques to assemble various biomolecules and coatings with nanoscale precision around a RNP. First, by modifying the sgRNA with a short S1m RNA aptamer, we developed a modular strategy, termed an “S1mplex,” to assemble Cas9 RNPs with biotinylated moieties. Using S1mplexes with biotinylated short oligonucleotides improves the ratio of precise to imprecise editing up to 18-fold over conventional methods approaching a ratio of 4 precise edits to every imprecise mutation, while assembly with fluorescent molecules allows selection and enrichment for cells with multiplexed gene edits. Second, we developed synthetic coatings for nonviral delivery of RNPs to human pluripotent stem cells. Combined, these strategies, which utilize chemically-defined, off-the-shelf reagents, have significant promise for gene editing applications in vitro (e.g., drug discovery, disease modeling) with human stem cells.


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    SEP 05, 2019 4:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 4:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    NOV 18, 2019 7:00 AM PST
    C.E. CREDITS
    NOV 18, 2019 7:00 AM PST
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    MAR 03, 2020 9:00 AM JST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    Loading Comments...
    Show Resources