NOV 02, 2017 10:00 AM PDT

WEBINAR: A CRISPR Way of Making Mice

Sponsored by: Synthego
Speaker
  • Professor & Associate Director, Aab Cardiovascular Research Institute, University of Rochester.
    BIOGRAPHY

Abstract

DATE: November 2, 2017
TIME: 10:00am PDT, 1:00pm EDT

A CRISPR Way of Making Mice

The bulk of genetic variation associated with human disease exists in the noncoding genome, much of which comprises transcribed long noncoding RNAs and non-transcribed regulatory sequences. While headway has been made in elucidating the function of some non-coding sequences, we have much to learn and we know virtually nothing about how sequence variants (such as SNPs) in regulatory sequences contribute to human disease.

 

CRISPR/Cas-mediated genome editing offers unprecedented ease and efficiency in generating mice carrying small (100s of nucleotides) or large (several kilobases) deletions as well as subtle substitutions of regulatory sequences in their native genomic milieu. Delivering synthetic single guide RNAs (sgRNA) and Cas9 protein (as RNPs) to the 1-cell mouse embryo has resulted in the rapid production of new genetic mouse models that previously would be considered risky or even challenging to engineer.

 

Optimized approaches to generating, genotyping, and phenotyping ‘CRISPRized’ mice carrying multiple types of genomic sequence edits will be discussed. Data will be presented demonstrating high efficiency editing with synthetic sgRNA leading to nearly 100% success rate of germline transmission, driving rapid generation of mouse models. This new wave of mouse models will accelerate discovery of genomic sequence function, including the role of coding and non-coding sequence variants associated with human disease.

Learning Objectives:

  • Explain mouse model generation using CRISPR/Cas9
  • Optimized approaches to generating, genotyping, and phenotyping ‘CRISPRized’ mice
  • Use of mouse models to study function and disease impact of coding & non-coding sequence variation

Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
JUL 15, 2021 9:00 AM PDT
JUL 15, 2021 9:00 AM PDT
Date: July 15, 2021 Time: 9:00am (PDT), 12:00pm (EDT) The Pisces workflow robust, easy-to-use, end-to-end multi-omics solution for highly multiplexed targeted Spatial RNA analysis. VeranomeB...
NOV 09, 2021 11:00 AM PST
C.E. CREDITS
NOV 09, 2021 11:00 AM PST
Date: November 09, 2021 Time: 11:00am (PDT), 02:00pm (EDT) Clinical translation of human pluripotent stem cells (hPSCs) requires advanced strategies that ensure safe and robust long-term gro...
NOV 17, 2021 8:00 AM PST
C.E. CREDITS
NOV 17, 2021 8:00 AM PST
Date: November 17, 2021 Time: 8:00am (PDT), 11:00am (EDT) From waste disposal to promising biomarkers and therapeutic agents, exosomes and other extracellular vesicles are valuable in resear...
JUL 15, 2021 8:00 AM PDT
C.E. CREDITS
JUL 15, 2021 8:00 AM PDT
Date: July 15, 2021 Time: 8:00am (PDT), 11:00am (EDT) High dimensional full spectrum flow cytometry grants unprecedented access to previously unattainable parameters in cellular biology. Flu...
NOV 02, 2017 10:00 AM PDT

WEBINAR: A CRISPR Way of Making Mice

Sponsored by: Synthego


Show Resources
Loading Comments...
Show Resources