OCT 05, 2016 12:00 PM PDT

Sensitive and Specific, Multiplex, Real-Time PCR Assays for Assessing the Abundance of Extremely Rare Mutations Associated with Cancer Diagnosis, Prognosis, and Therapy

Speaker

Abstract

Real-time multiplex PCR assays are potentially the most rapid, most sensitive,
and least expensive way to assess the abundance of mutant DNA fragments present in liquid biopsies; provided that a way is found to selectively amplify rare mutant fragments without amplifying abundant related wild-type fragments; and provided that the amplicons generated from different mutants that occur in the same or an adjacent codon are prevented from forming heteroduplexes that interfere with exponential amplification, obscuring the threshold values of the rarer mutants.  “SuperSelective” PCR primers, due to their unique design, are extraordinarily specific, able to selectively initiate the synthesis of amplicons
on ten mutant DNA fragments in the presence of 1,000,000 wild-type DNA fragments,
even though the only difference between the mutant and the wild-type is a single-nucleotide polymorphism.  Moreover, each SuperSelective primer that is specific for a particular mutation possesses a unique 5' tag sequence that is incorporated into the resulting amplicons and detected in real-time by differently colored molecular beacon probes. 
Each SuperSelective primer specific for a particular mutation also possesses a unique “bridge” sequence that assures that each primer only copies its intended amplicon,
and that creates a single-stranded bubble in heteroduplexes that enables the rarest amplicons to be independently exponentially amplified.  And finally, the inclusion of primers for a wild-type reference gene fragment, enables the abundance of each type of mutant
DNA fragment to be assessed (without measuring the amount of DNA in the sample)
by determining the difference between its threshold value and the threshold value of
the reference gene.
 


Show Resources
You May Also Like
FEB 15, 2023 7:00 AM PST
FEB 15, 2023 7:00 AM PST
Date: February 15, 2023 Time: 7:00am (PST), 10:00pm (EST), 4:00pm (CET) While not all microscopy samples can fluoresce, all can scatter light, and this scattered light can be imaged. This ha...
OCT 13, 2022 9:00 AM +08
OCT 13, 2022 9:00 AM +08
First Broadcast: Date: October 12, 2022 Time: 8:00am PDT, 11:00am EDT Second Broadcast: Date: October 12, 2022 Time: 9:00am SGT The new Embedded CryoSPARC Live, now fully integrated with t...
AUG 10, 2022 10:00 AM PDT
AUG 10, 2022 10:00 AM PDT
Date: August 10, 2022 Time: 10:00am PDT, 1:00pm EDT The global pandemic has increased focus and scrutiny on molecular diagnostic assay development, resulting in a need for assays that provid...
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...
SEP 22, 2022 9:00 AM PDT
SEP 22, 2022 9:00 AM PDT
Date: September 22, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 6:00pm (CEST) Optimizing platforms for surgical specimen collection and deep human phenotyping was used to enhance protein biomarke...
SEP 28, 2022 9:00 AM PDT
SEP 28, 2022 9:00 AM PDT
Date: September 28, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 6:00pm (CEST) While COVID-19 continues to be the most pressing diagnostic focus for clinical laboratories, HIV remains a serious g...
OCT 05, 2016 12:00 PM PDT

Sensitive and Specific, Multiplex, Real-Time PCR Assays for Assessing the Abundance of Extremely Rare Mutations Associated with Cancer Diagnosis, Prognosis, and Therapy



Show Resources
Loading Comments...
Show Resources