MENU

Single cell gene expression: new insights through the lens of full length mRNA isoform resolution

C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Principal Scientist
    Biography
      Jason G. Underwood, Ph.D is Principal Scientist for PacBio, specializing in molecular biology. After doctoral and postdoctoral training in RNA biology, Dr. Underwood joined PacBio in 2010 and developed the first protocols for PacBio's long read RNA-seq product known as Iso-Seq or isoform sequencing to read full length mRNAs. More recently, he has focused on technology development, adapting the Iso-Seq methods to target specific gene families or to capture full length mRNA sequences with single cell resolution.

    Abstract

    Single cell RNA sequencing (scRNA-seq) emerged to characterize gene expression differences between individual cells, allowing a higher resolution look at mRNA abundance than bulk RNA- seq. However, most scRNA-seq methodologies are coupled to short read sequencing platforms that report either sparse information spread across the entire mRNA or 3’ end tags that serve to quantify gene counts. Neither reveals contiguous mature mRNA sequences and the associated isoform-specific open reading frames which often encode proteins with different functional properties. To address this, we and other groups have modified the workflows of existing single cell transcriptomic technologies to instead generate long read RNA-seq libraries.  These libraries are then profiled using PacBio’s SMRT sequencing technology on the Sequel II instrument. In the steps that follow the single cell technology, the workflow is similar to PacBio’s RNA-seq offering, Iso-Seq. Importantly, the single molecule HiFi reads are highly accurate so the required single cell information (barcode and unique molecular index) can be directly assessed in the sequencing reads. In this Labroots session, I discuss publications and results from this approach using three different single cell technologies, with a special focus on quality control metrics that we have applied to the single cell long reads using orthogonal data types. I will show that existing single cell protocols from these providers can be modified in a subtle fashion to generate matched short read and long reads sequencing libraries harboring the same single cell information.  I’ll also touch on the bioinformatic methods we are using to process and analyze the single cell data.  Visualizing some examples from this single cell data type will highlight new insights uncovered when single cells are profiled for their isoform expression.

    Learning Objectives:

    1. How to modify laboratory workflows from existing single cell transcriptomic platforms to obtain full-length isoform information

    2. Bioinformatic methods and how these can be applied as a quality control step for long read isoform sequencing from single cells

    3. How isoform-level information can uncover biological phenomena that remain invisible with short reads alone.


    Show Resources
    You May Also Like
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    OCT 08, 2020 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    JUN 23, 2020 10:00 AM PDT
    C.E. CREDITS
    JUN 23, 2020 10:00 AM PDT
    DATE: June 23, 2020 TIME: 10:00am PT Human mesenchymal stromal or stem cells (MSCs)-based immunomodulation treatment has been proposed as a suitable therapeutic approach for many diseases, s...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    Loading Comments...
    Show Resources
    Attendees
    • See more