MAR 18, 2015 10:30 AM PDT

Special Lecturer - Oxidative Stress in Schizophrenia: a Translational Approach

Presented at: Neuroscience
Speaker

Abstract

Schizophrenia is a severe psychiatric disorder affecting 1% of the world’s population, leading to high human, social and economic burdens. Understanding how the interaction of gene and environment risk factors during neurodevelopment leads to cognitive, affective and social impairment is a central challenge in schizophrenia pathophysiology. I will discuss how these risk factors converge on a hub composed of NMDA-receptor hypofunction, neuroinflammation and redox imbalance/oxidative stress, leading to structural and functional dysconnectivity. Based on oxidative stress markers and genetic associations in patients, this hypothesis received support from a glutathione deficit preclinical model (gclm -/-mice), reproducing numerous schizophrenia phenotypes including NMDA receptor hypofunction, inflammation, impaired parvalbumine fast-spiking GABA interneurons (PVI), myelination, neural synchronization and behavioral anomalies. This model also highlights childhood and peripuberty as critical periods of high vulnerability for environmental adverse insults. Indeed, additional oxidative challenges in juvenile and peripubertal ages, but not in adult gclm-/- mice, lead to severe and permanent PVI impairment. Regulation of redox state in PVI also balances plasticity and stability across cortical development, through delaying and/or keeping critical periods of plasticity open-ended. Moreover, long range connections may also be affected by redox dysregulation during development: gclm-/- mice present myelin marker deficits in the prefrontal cortex at peripuberty, involving the Fyn kinase pathway dysregulation, which lead to decreased oligodendrocyte proliferation. Most importantly, the antioxidant and GSH precursor N-acetyl-cysteine (NAC), prevents the morphological, biochemical, physiological and behavioral alterations described above. A translational approach towards prevention attempts to modify the disease course by redox modulators will be presented.


Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
SEP 17, 2021 12:00 PM CST
C.E. CREDITS
SEP 17, 2021 12:00 PM CST
Date: September 16, 2021 Time: 9:00pm (PDT), 12:00am (EDT) 3D cellular models like organoids and spheroids offer an opportunity to better understand complex biology in a physiologically rele...
NOV 09, 2021 11:00 AM PST
C.E. CREDITS
NOV 09, 2021 11:00 AM PST
Date: November 09, 2021 Time: 11:00am (PDT), 02:00pm (EDT) Clinical translation of human pluripotent stem cells (hPSCs) requires advanced strategies that ensure safe and robust long-term gro...
OCT 20, 2021 10:00 AM PDT
C.E. CREDITS
OCT 20, 2021 10:00 AM PDT
Date: October 20, 2021 Time:10:00am (PDT), 1:00pm (EDT) As the prevalence of Diabetes continues to rise in many areas across the globe, healthcare providers continue to look for methods that...
OCT 12, 2021 9:00 AM PDT
C.E. CREDITS
OCT 12, 2021 9:00 AM PDT
Date: October 12, 2021 Time: 9:00am (PDT), 12:00pm (EDT) SCIEX’s next-generation Biologics Explorer software is an innovative platform for the comprehensive and deep characterization o...
AUG 24, 2021 11:00 AM PDT
C.E. CREDITS
AUG 24, 2021 11:00 AM PDT
Date: August 24, 2021 Time: 11:00am (PDT), 1:00pm (EDT) Electron-based dissociation mechanisms have shown great promise for advanced characterization of biomolecules. However, routine adopti...
MAR 18, 2015 10:30 AM PDT

Special Lecturer - Oxidative Stress in Schizophrenia: a Translational Approach

Presented at: Neuroscience


Show Resources
Loading Comments...
Show Resources