MENU
AUG 30, 2016 8:00 AM PDT

Use of Stem Cell models to assess Genetic Change Underlying Neurodevelopmental Disorders

Speaker
  • ARC DECRA Fellow, Neurogenetics Research Program, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Australia
    Biography
      Jolly completed his PhD at the University of Adelaide, South Australia, in 2010 during which he applied neural differentiation of embryonic stem cells to study the earliest stages of brain development. He next joined the Neurogenetics Research Program headed by Professor Jozef Gecz for post-doctoral training at the Women's and Children's Hospital in Adelaide (SA Pathology). His application of various neural cell culture models of brain development resulted in the discovery of several new genetic causes of neurodevelopmental disorders. Dr. Jolly now leads his own research group at the University of Adelaide, focussing on the roles of the Nonsense Mediated mRNA Decay (NMD) pathway, and the genes USP9X, HCFC1, and PCDH19 in normal and pathological processes of brain development and function. He is currently an Australian Research Council DECRA Fellow.

    Abstract
    The study of human genetic neurodevelopmental disorders (NDDs) is complicated by the inaccessibility of the relevant tissue for study: it is extremely rare to obtain post-surgical brain samples from patients, and the origins of disease often occur in-utero. The technologies of ex-vivo stem cell culture is a valuable tool to study embryonic development. Derived from the embryo and cultured under appropriate conditions, both embryonic stem and committed neural stem cells display multipotent features of the tissue they are derived from, and are licenced in-vitro with the properties of unlimited self-renewal.  The subsequent differentiation of these cells recapitulate many aspects of in-vivo development and can be used to model embryonic brain development. Because of these attributes, and the ease of genetic and other manipulations afforded in-vitro, we have employed these models to assess the effects of gene mutations that underlie neurodevelopmental disorders. We have been able to assign neurodevelopmental functions to newly discovered novel genes, test the pathogenicity of variants of unknown significance, and identify aspects of brain development likely affected in patients harbouring deleterious mutations.
     

    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    MAR 18, 2021 8:00 AM PDT
    C.E. CREDITS
    MAR 18, 2021 8:00 AM PDT
    DATE: March 18, 2021 TIME: 8:00am PDT Sequencing of bulk cells, single cells, and nuclei is opening doors in the understanding of complex biological processes....
    DEC 09, 2020 9:00 AM PST
    C.E. CREDITS
    DEC 09, 2020 9:00 AM PST
    DATE: December 09, 2020 TIME: 09:00am PST Hematopoietic stem cells (HSCs) ensure homeostasis of blood throughout life. In this webinar, we share insights into the smart and easy isolation, c...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    DEC 16, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 16, 2020 8:00 AM PST
    Date: December 16, 2020 Time: 8:00am (PST), 11:00am (EST) Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better under...
    Loading Comments...
    Show Resources
    Attendees
    • See more