OCT 03, 2019 9:00 AM PDT

Structures of CRISPR-Cas surveillance complexes

Presented at: CRISPR 2019
C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Assistant Professor and CPRIT Scholar, Department of Molecular Biosciences, University of Texas at Austin
    Biography
      David Taylor started as an Assistant Professor in the Department of Molecular Biosciences at the University of Texas at Austin in 2016. There, he is the Director of the Sauer Structural Biology Laboratory and a member the Center for Systems and Synthetic Biology and the LIVESTRONG Cancer Institutes at Dell Medical School. His laboratory is focused on structural and mechanistic studies of CRISPR-Cas surveillance complexes and methods development for cryo-electron microscopy (cryo-EM). David received his B.S. in Biochemistry summa cum laude from Syracuse University in 2008. He completed his Ph.D. with distinction in Molecular Biophysics and Biochemistry at Yale University in 2013. In 2014, he joined the laboratories of Jennifer A. Doudna and Eva Nogales at the University of California, Berkeley as a Post-doctoral Fellow, where he studied the structures of CRISPR complexes using cryo-electron microscopy. He has won numerous awards during his short career. He's been named a Barry M. Goldwater Scholar, an NSF Pre-doctoral Fellow, an NSF East Asia and Pacific Summer Institute Fellow, a Damon Runyon Fellow, a CPRIT Scholar, and an Army Young Investigator. He's received the Outstanding Teaching Award and the Mary Ellen Jones Dissertation Prize from the Department of Molecular Biophysics and Biochemistry at Yale University. He also received the 2015 Outstanding Post-doctoral Fellow Award from the Department of Molecular and Cell Biology at the University of California, Berkeley.

    Abstract

    CRISPR (clustered regularly interspaced short palindromic repeats) RNA and CRISPR-associated genes (Cas) assemble into RNA-guided surveillance complex that targets foreign nucleic acids for destruction. There are two major classes of CRISPR-Cas systems. Class I systems utilize a multi-subunit effector complex called Cascade to recognize and degrade target nucleic acids; whereas, Class II systems employ a single polypeptide for these activities. Here, I present structures of a novel, uncharacterized Type IV surveillance complex from Class I. It has striking similarity to Type III Cmr effector complexes. It is tempting to hypothesize that it targets single-stranded RNA. I also present detailed kinetic characterization of high-fidelity Class II Cas9 variants. These high-fidelity enzymes achieve specificity by altering the kinetic portioning and allowing substrate release prior to the irreversible cleavage reaction.

    Learning outcomes:

    1. Understand how cryo-EM can be used for structural studies of CRISPR-Cas complexes.  
    2. Interpret kinetic data of Cas9 complexes.


    Show Resources
    You May Also Like
    OCT 08, 2020 7:00 AM PDT
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    AUG 25, 2020 8:00 AM PDT
    C.E. CREDITS
    AUG 25, 2020 8:00 AM PDT
    DATE: August 25, 2020 TIME: 8:00am PDT, 10:00am CDT, 11:00am EDT Recombinant lentivirus (LV) and adeno-associated virus (AAV) are critical components of cell and gene therapies, which show g...
    NOV 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    OCT 29, 2020 6:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    Loading Comments...
    Show Resources
    Attendees
    • See more