NOV 16, 2017 10:00 AM PST

WEBINAR: Tracking neural network activity in the B-27™ Plus Neuronal Culture System with a Maestro Pro MEA platform

Speaker

Abstract

DATE: November 16, 2017
TIME: 10:00am PST, 1:00pm EST,

Neuronal networks play a fundamental role in the brain, with many diseases linked to disruptions in network activity. Cell-based neuronal assays need to recapitulate these critical aspects of biology in vitro to be applicable in drug discovery, disease-in-a-dish modeling, and safety pharmacology and toxicology. Importantly, in vitro neural preparations, such as cultured rodent primary neurons, form synaptic connections that give rise to spontaneous electrophysiological activity and allow functional evaluation of network activity. Using in vitro Maestro MEA technology, scientists can now quickly and easily measure key electrical network behaviors, such as excitability and connectivity, from neurons cultured over electrodes in multiwell MEA plates.

A critical component of any in vitro neural assay is the culture media system, which must support long-term viability and electrophysiological activity to encourage functional synaptic connections and network formation. B-27™ Supplement and Neurobasal™ Medium have been widely used throughout neural assay development in the last 20+ years, but recent approaches to model specific neural phenotypes, such as seizures-in-a-dish, highlights a need for neural media systems to develop robust phenotypes of synchronized network activity.

This webinar will provide an in-depth review of techniques for performing MEA assays to assess neural network electrophysiology. In so doing, we will characterize the neural network maturation produced with the new B-27™ Plus Neuronal Culture System, as compared to other media types. The B-27™ Plus System excelled in three key areas for in vitro neural assays: 1) supported long-term culture with a high degree of electrode coverage, 2) encouraged substantial spontaneous electrophysiological activity, and 3) facilitated network maturation as evidenced by synchronous activity.


Show Resources
You May Also Like
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
APR 26, 2022 7:00 AM PDT
C.E. CREDITS
APR 26, 2022 7:00 AM PDT
Date: April 19, 2022 Time: 7:00am (PDT), 10:00am (EDT), 4:00pm (CEST) High-content (HC) phenotypic profiling approaches are a powerful tool to study the effect of biological, genetic, and ch...
JUN 21, 2022 6:00 AM PDT
JUN 21, 2022 6:00 AM PDT
Date: June 21, 2022 Time: 6:00am (PDT), 9:00am (EDT), 3:00pm (CEST) The global understanding and practice of medicine is currently undergoing a revolutionary change. This shift to precision...
MAR 23, 2022 11:00 AM PDT
MAR 23, 2022 11:00 AM PDT
Date: March 23, 2021 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEDT) In this presentation, Dr. Middleton will review the development and deployment of large-scale saliva-based COVID-19 test...
NOV 16, 2017 10:00 AM PST

WEBINAR: Tracking neural network activity in the B-27™ Plus Neuronal Culture System with a Maestro Pro MEA platform



Show Resources
Loading Comments...
Show Resources