MAY 13, 2015 03:00 PM PDT

Using the network architecture of eQTLs to understand complex traits

Speakers
  • Postdoctoral Research Fellow, Dana Farber Cancer Institute/Harvard University
    Biography
      John Platig received his PhD in Physics from the University of Maryland. His thesis focused on the applications of complex network methods to biological data sets, with an emphasis on understanding how errors in edge identification affect network properties. In conjunction with his physics training, he was a Cancer Research Training Fellow at the National Cancer Institute, working to identify potential therapeutic targets from a reconstructed gene regulatory network in Diffuse Large B Cell Lymphoma. In 2013 John started as postdoctoral fellow with John Quackenbush at the Dana-Farber Cancer Institute. He is currently working on network inference and clustering methods to better understand genetic and other factors that drive phenotypes.

    Abstract:

    Genome Wide Association Studies (GWAS) and eQTL analyses are producing huge numbers of associations and show no signs of slowing. There are now more than 8,500 SNPs associated with more than 350 complex traits reported in the NHGRI GWAS Catalog. However, interpreting these associations collectively in a functional context remains a challenge. Using genotyping and gene expression data from 163 lung tissue samples in a lower respiratory disease study, we calculated eQTL associations between SNPs and genes and cast significant associations as links in a bipartite network. We identified biological function by focusing on densely linked communities, which comprise groups of SNPs associated with groups of genes. By investigating the intermediate scale of network organization, we found GWAS SNPs enriched at the cores of these communities, including GWAS hits for COPD, asthma, and pulmonary function, among others. We believe these methods are widely applicable to any data set that can be represented as a bipartite network with a giant connected component.


    Show Resources
    You May Also Like
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    MAY 16, 2019 04:00 PM CEST
    C.E. CREDITS
    MAY 16, 2019 04:00 PM CEST
    DATE: May 16, 2019TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST The emergence of NGS is revolutionizing the microbiological sciences and transforming medicine. Deep sequencing has...
    AUG 27, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 09:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    JUN 19, 2019 10:00 AM PDT
    JUN 19, 2019 10:00 AM PDT
    DATE: June 19, 2019TIME: 10:00am PDT, 1:00pm EDT As we develop new methods to create more biologically relevant models for research in understanding disease etiology and in...
    JUL 31, 2019 09:00 AM PDT
    C.E. CREDITS
    JUL 31, 2019 09:00 AM PDT
    DATE: July 31, 2019TIME: 9:00am PT, 12:00pm ET The choroid plexus, which makes up the blood-cerebrospinal fluid barrier in the central nervous system (CNS), lines the ventricle...
    MAY 23, 2019 09:00 AM PDT
    C.E. CREDITS
    MAY 23, 2019 09:00 AM PDT
    DATE:  May 23, 2019TIME:   9:00am PDT, 12:00pm EDT Although mesenchymal stem/stromal cells (MSCs) chondrogenic differentiation has been thoroughly investigated...
    Loading Comments...
    Show Resources