MENU

New viral and non-viral platforms for T-cell engineering

Speaker
  • Director, R&D, Cell Biology/Transfection at Thermo Fisher Scientific
    Biography
      Xavier de Mollerat du Jeu, Ph.D. is a Director of R&D transfection group at Thermo Fisher Scientific, working on creating and improving new nucleic acids delivery for both research and therapeutic applications. Xavier identified new DNA delivery approaches for hard to transfect cell lines and primary/stem cells and he is the inventor of Lipofectamine® 3000. Xavier's team is also focusing on new delivery solutions for CRISPR delivery, new scalable lentiviral production systems, mechanical delivery approaches for primary T cells and in vivo delivery of RNAi/mRNA for research and therapeutic application. He studied molecular biology and plant physiology at the University of Montpellier II in France, and received his Ph.D. in human genetics in 2003 from Clemson University in South Carolina. His thesis work involved identifying the gene(s) responsible for Split Hand/Split Foot Malformation 3 (SHFM 3). His post-doctoral fellowship research was in the laboratory of Dr. Michael G. Rosenfeld at UCSD, where he studied the roles of microRNAs in pituitary gland development. He joined Thermo Fisher in 2005.

    Abstract

    Recent FDA approval of the first Chimeric Antigen Receptor T cell (CAR-T) therapy offers cancer patients more promise than ever for curative effects. However, many technical challenges in T cell gene delivery still remain in order for this therapy to become a standard of care practice. In this webinar, we will highlight the different viral and non-viral delivery approaches used in T cell engineering for cell and gene therapy applications including:

    New solution for small-to-large scale serum-free, suspension lentiviral production – LV-MAX™ Lentiviral Production System

    • Platform development process using Design of Experiment (DOE) methodologies
    • High-throughput to large scale bioreactor protocols
    • Cost benefits of this system over current methods

    Novel gene editing tools for primary T cells

    • New potent gene editing tools to increase knock-in and knock-out efficiency
    • Addressing non-viral delivery barriers through protocol optimization

    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    NOV 18, 2019 7:00 AM PST
    C.E. CREDITS
    NOV 18, 2019 7:00 AM PST
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    APR 07, 2020 8:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    DEC 10, 2019 9:00 AM PST
    C.E. CREDITS
    DEC 10, 2019 9:00 AM PST
    DATE: December 10, 2019TIME: 9:00am PST, 12:00pm EST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid dif...
    Loading Comments...
    Show Resources