JUL 17, 2018 10:45 PM PDT

Immunotherapy Diversification: From CAR-T cells to CAR-NK cells

Immunotherapy is an advancing field within the scope of therapeutic oncologic approaches.  It is of great interest because it aims to utilize the human body’s own immune system to thwart and eradicate cancerous cells.  The discovery of chimeric antigen receptor (CAR) models to augment anti-tumor actions by our natural immune system was actually made in 1891 by a New York surgeon named William Coley.  His use of an injected beta-hemolytic Streptococcus species into a patient with osteosarcoma demonstrated that enhancing the immune system can result in tumor shrinkage when the conditions and factors involved are right.  While at the time the mechanism was unknown, what became known as “Coley’s toxins” were really the beginnings of immunotherapy.  Coley had noticed that patients with cancer who got infections after surgery did better than patients without infection.  His hypothesis was that the infection promoted or enhanced the immune system’s natural function and resulted in better cancer outcomes.  There were others at the time that utilized his method successfully, it has been reported that even the Mayo brothers communicated with Coley about their results, but it did not always produce the desired results; Coley documented that each injection was painstakingly made for each individual patient and others, who tried to replicate is work, were unsuccessful perhaps because less care was taken for each individual injection, as has been suggested in the literature.  Now, 100+ years later, scientists are reviving his theories after they were discarded because replication attempts by others failed. 

CAR-T cell therapy has been on the forefront of cancer immunotherapy research and some therapies have even come far enough along to be approved by the United States Food and Drug Administration (FDA) for clinical patient use.  Still other areas of CAR-T cell therapy are being investigated for other types of cancers and are in the midst of clinical trials.

A new delivery design that utilizes the CAR model has just jumped onto the map and is reportedly being researched at MD Anderson, the University of San Diego School of Medicine, and the University of Minnesota.  This new immunotherapy utilizes natural killer cells or NK cells along with the CAR motif to destroy tumor cells.  NK cells are part of the body’s innate immune system.  They are lymphocytes and come from a progenitor cell shared in common with T and B cells.  NK cells respond quickly to diverse pathogens encountered within the body.  NK cells are the body’s normal cancer fighting reserve which is how they got their namesake.  This ability to kill cancerous cells arises when a cell is determined to be in need of destruction either because of errors in cell division or DNA replication that results in mutagenic expression.  Before the mutagenic expression impacts other cells or replicates itself, NK cells recognize the cell and destroy it.  They also recruit other cells, macrophages and dendritic cells, to enhance an immune response and phagocytize cellular material that remains where necessary. 

Researchers are using these NK cells and CARs to create CAR-NK cells which is exciting for a few reasons.  The first is that because NK cells are already patrolling for particular cell expression that looks mutagenic, they don’t need the same type of antigen presenting priming like CAR-T cells do for each individual cancerous antigen.  This means that these NK cells can be used for multiple different cancers and multiple different patients with potentially similar results.  Secondly, the toxicity of this type of treatment has less potential for long term damage or late stage effects because they mobilize the innate immune system already in place in the body.  The research organizations working on this new direction in immunotherapy have different methods of generating NK cells. 

The University of Minnesota and University of San Diego are collaborating on the project and utilize human induced pluripotent stem cells (iPSCs) to generate NK cells.  They can take skin cells or blood cells and provide signals to revert them back to their pluripotent stem cell state, meaning they can become whatever cell is needed simply through use of the appropriate signaling molecules, and then induce them to become NK cells, all in a laboratory setting.  The idea is that these can be “ready-made” therapeutic treatments which avoid the constraints that come with patient specific therapeutic approaches.  The collaborative group is looking to take their delivery model to clinical trials in the coming months and reported very few adverse side effects in the mouse models used so far. 

MD Anderson researchers are studying CAR-NK cell therapies but use cord blood and separate out the NK cells.  They insert a CAR that recognizes CD19 and is currently in clinical trials that started last year (NCT03056339).  Patients that participate have to have relapsed disease and are focusing on B-Lymphoid malignancies, Non-Hodgkin Lymphoma, and both Acute and Chronic Lymphocytic Leukemia. 

Sources: Cell Stem Cell, Experimental Biology and Medicine, Cancer Research Institute, ClinicalTrials.gov, Healthline,

 

About the Author
  • Mauri S. Brueggeman is a Medical Laboratory Scientist and Educator with a background in Cytogenetics and a Masters in Education from the University of Minnesota. She has worked in the clinical laboratory, taught at the University of Minnesota, and been in post secondary healthcare education administration. She is passionate about advances and leadership in science, medicine, and education.
You May Also Like
JUN 16, 2018
Clinical & Molecular DX
JUN 16, 2018
Nanoparticles Deliver "Theranostics" for Cancer Patients
New technology combing therapeutic agents and diagnostics (theranostics) can be used to deliver drugs to cancer cells. From the Moscow Institute of Physics...
JUN 27, 2018
Immunology
JUN 27, 2018
Immune Cells Responsible for Chemo-induced Diarrhea
While studying specific immune cells in the context of chronic itching in the skin, two Washington University School of Medicine scientists discovered that...
JUL 12, 2018
Infographics
JUL 12, 2018
3D Imaging Advantage
Learn about the advantages and the technology behind 3D cellular image acquisition and analysis with this infographic from Molecular Devices....
AUG 15, 2018
Cancer
AUG 15, 2018
Cancer Control Headway in The Last 20 Years
Learning from history and what changes have been made will continue to help drive cancer controls for the future....
AUG 21, 2018
Cancer
AUG 21, 2018
'Zombie' gene returns to life and kills cancer in elephants
Researchers have discovered a gene that can protect elephants from cancer. An estimated 17 percent of humans worldwide die from cancer, but less than five ...
SEP 11, 2018
Cannabis Sciences
SEP 11, 2018
The Potential Anti-cancer Effects of Cannabinoids
They're known for helping to reduce the impact of cancer drug side effects, but it's possible that cannabinoids themselves are cancer fighters....
Loading Comments...