SEP 16, 2015 4:57 PM PDT

Aggressive AML

WRITTEN BY: Ilene Schneider
University of Manchester scientists have identified a gene, FOXC1, that, if turned on, can cause more aggressive cancer in a fifth of acute myeloid leukemia (AML) patients, according to a Cancer Research UK study published in the journal Cancer Cell and reported in Drug Discovery & Development
Gene can make acute myeloid leukemia more aggressive.
The FOXC1 gene is normally turned on during embryonic development. It is needed to turn cells into specialized tissues, like the eyes, kidney, brain and bone, but this new research found that in certain patients with AML, a type of blood cancer that affects white blood cells and the bone marrow, this gene was wrongly turned on inside the patient’s cancer cells.

When it is turned on in blood cell tissue, FOXC1 stunts the development of blood cells and stops them from maturing into normal specialized blood cells. This condition causes the cancer to be more aggressive, because young cells are able to replicate more than mature cells. This, in turn, causes cancer cells to grow faster and become more difficult to treat.

About 2,900 people were diagnosed with AML in the UK in 2011. Of that number, around 20 per cent would have had the FOXC1 gene wrongly turned on in their cancer.

According to Dr Tim Somervaille, lead author from the Cancer Research UK Manchester Institute at The University of Manchester, “This is an important finding which helps us understand how acute myeloid leukemia develops and why some cases of AML are more aggressive than others. Here, instead of being faulty or mutated, this normal gene is turned on in the wrong place at the wrong time which makes the cancer grow more rapidly. There are certain situations where this gene is necessary, as in the development of the eye and skeleton before birth. But when it’s switched on in the wrong tissue, it causes more aggressive forms of leukemia.” 

Nell Barrie, senior science communication manager at Cancer Research UK, added, “It’s essential that we continue to research basic biology to further understand how cells become cancerous. In this study, identifying a specific gene behind more aggressive forms of acute myeloid leukemia could give clues for new ways to personalize treatments for select patients. The better we understand the nuts and bolts of each cancer, the sooner we can find new ways to stop it.”
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
SEP 04, 2020
Cancer
Attacking Cancer's Metabolism: A New Take on Fermented Wheat Germ Extract
SEP 04, 2020
Attacking Cancer's Metabolism: A New Take on Fermented Wheat Germ Extract
One of the hallmarks of evolution is the oxidative phosphorylation metabolic system. Not only does it produce energy in ...
SEP 07, 2020
Cancer
Identifying Robust Tumor Features for Better Radiomics
SEP 07, 2020
Identifying Robust Tumor Features for Better Radiomics
With the advancement of technology comes the renovation of classical medical techniques. Diagnostic is one of the areas ...
OCT 04, 2020
Cancer
Mutations form in specific genomic patterns based on external and internal factors
OCT 04, 2020
Mutations form in specific genomic patterns based on external and internal factors
New research published in Nature Genetics provides insight on the formation of mutations in the genome. Researchers from ...
OCT 16, 2020
Cancer
Chronic jet lag raises cancer risk
OCT 16, 2020
Chronic jet lag raises cancer risk
We all know how horrible it feels to have a bad night of sleep. That feeling is only intensified with jet lag because ou ...
OCT 18, 2020
Cancer
Virus-mimicking drug attacks melanoma tumors
OCT 18, 2020
Virus-mimicking drug attacks melanoma tumors
Research published recently in the journal Science Translational Medicine from scientists at the UCLA Jonsson Compr ...
NOV 02, 2020
Cancer
Age impacts response to melanoma treatment
NOV 02, 2020
Age impacts response to melanoma treatment
Research from the Johns Hopkins Kimmel Cancer Center and Johns Hopkins Bloomberg School of Public Health& ...
Loading Comments...