DEC 17, 2016 8:47 AM PST

Deficiency of Two Opposing Enzymes Spurs Liver Cancer

WRITTEN BY: Xuan Pham

If a cancer is caused by the over-activation of proteins that enhance growth, then blocking these enzymes should stunt the tumor. Yet, in liver cancer, drugs that inhibit growth enzymes do not seem to slow the cancer growth. And the most recent research suggests that cancer biology is more complex than previously thought.

"When it comes to liver cancer, I think we've been making strategic mistakes," said Gen-Sheng Feng, professor at the University of California, San Diego, and the study’s senior author. "In cancer development, we always thought about two distinct families of enzymes -- one promotes cancer, one inhibits it.”

Indeed, this line of thinking has led to the creation of drugs that, for the most part, do one or the other. That is, they either block the over-active pro-cancer enzymes or stimulate the activity of anti-cancer proteins. “Many drugs have been developed to block the cancer-promoting pathways, but we and others are now finding that many classical pro-cancer proteins are actually inhibitors,” said Feng. This explains why the intended consequences for anticancer drugs don't always work.

To better understand the mechanism behind why cancer drugs fail in liver cancer, the team honed in on the balance of tumor-suppressor genes versus those that promote tumor growth in a mouse model. They found that mice that lacked both types of proteins are, paradoxically, most susceptible to liver disease and cancer.

In particular, the two opposing cancer proteins were identified as Shp2 and Pten. Shp2 is well-characterized as a tumor-promoting protein, while Pten is a known tumor-suppressing protein. Yet, mice with a loss of both of these proteins had the largest and most prominent tumor formation in the shortest amount of time.

"So the roles of tumor-promoting and tumor-suppressing enzymes are not as simple as we thought," Feng said. "This also explains many unwanted side effects with drugs that target these enzymes. Their consequences can differ depending on cell type."

Feng’s team theorized that loss of the two enzymes triggered uncontrolled inflammation and fibrosis in the liver, which helped promote tumor formation. Interestingly, when they analyzed human liver cancer samples, the team found a similar pattern – those with low or deficient levels of SHP2 and PTEN typically had the poorer prognoses.

"Liver cancer is more complicated than we thought. These pathways, when over-activated, stimulate tumor development, but so does inhibiting them," Feng said. "That's why we can't rush to conclusions like we have in the past. But now that we have a good model that mimics the human pathogenic process and we can use that to work out the mechanisms that lead to liver disease and cancer, and search for novel drug targets."

Additional sources: UC San Diego Health

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
JUL 28, 2020
Cancer
Should you get your DNA test for community-based genetic screening?
JUL 28, 2020
Should you get your DNA test for community-based genetic screening?
In a new study published in the journal Nature Medicine, researchers champion the potential of community-based gene ...
AUG 28, 2020
Cancer
Using CRISPR-Cas12a to Repair Hereditary Cancers in the Lab
AUG 28, 2020
Using CRISPR-Cas12a to Repair Hereditary Cancers in the Lab
Genome repair is one of the big-ticket research areas for the future of medicine. CRISPR-Cas9 systems can edit the genom ...
SEP 04, 2020
Cancer
Attacking Cancer's Metabolism: A New Take on Fermented Wheat Germ Extract
SEP 04, 2020
Attacking Cancer's Metabolism: A New Take on Fermented Wheat Germ Extract
One of the hallmarks of evolution is the oxidative phosphorylation metabolic system. Not only does it produce energy in ...
SEP 03, 2020
Clinical & Molecular DX
Tiny Diagnostic Robot Tank Explores the Colon
SEP 03, 2020
Tiny Diagnostic Robot Tank Explores the Colon
The colon, also known as the large intestine, is where the final stages of digestion happen. Here, water, salts, and rem ...
SEP 11, 2020
Cancer
Targeting Senescence in the Peripheral Nervous System to Fight Toxicity
SEP 11, 2020
Targeting Senescence in the Peripheral Nervous System to Fight Toxicity
Chemotherapy is a life-saving discovery for cancer patients. One of its biggest drawbacks is the toxicity that comes wit ...
SEP 08, 2020
Cancer
The story of a very scary protein
SEP 08, 2020
The story of a very scary protein
New research from biochemists at the University of Alberta has identified a protein that triggers the growth of aggressi ...
Loading Comments...