DEC 20, 2016 10:49 AM PST

Scripps Florida Scientists Discover New Natural Source of Potent Anti-Cancer Drugs

JUPITER, FL – December 20, 2016 – Scientists from the Florida campus of The Scripps Research Institute (TSRI) have developed an efficient process to rapidly discover new “enediyne natural products” from soil microbes that could be further developed into extremely potent anticancer drugs.

The study highlights microbial natural products as abundant sources of new drug leads. The researchers’ discovery process involves prioritizing the microbes from the TSRI strain collection and focusing on the ones that are genetically predisposed to produce specific families of natural products. The scientists say this process saves time and resources in comparison to the traditional approaches used to identify these rare molecules.  

The study, led by TSRI Professor Ben Shen, was published today in the journal mBio.

Shen and his colleagues uncovered a new family of enediyne natural products, called tiancimycins, (TNMs) which kill selected cancer cells more rapidly and completely in comparison to toxic molecules used in FDA-approved antibody-drug conjugates (ADCs)— monoclonal antibodies attached to cytotoxic drugs that target only cancer cells.  

The scientists also discovered several new producers of C-1027, an antitumor antibiotic currently in clinical development, which can produce C-1027 at much higher levels.

It has been more than a decade since Shen first reported on the C-1027 enediyne biosynthetic machinery, and he speculated then that the knowledge obtained from studying biosynthesis of C-1027, and other enediynes, could be used for the discovery of novel enediyne natural products.

“The enediynes represent one of the most fascinating families of natural products for their extraordinary biological activities,” Shen said. “By surveying 3,400 strains from the TSRI collection, we were able to identify 81 strains that harbor genes encoding enediynes. With what we know, we can predict novel structural insights that can be exploited to radically accelerate enediyne-based drug discovery and development.”

“The work described by the Shen group is an excellent example of what can be achieved by coupling state of the art genomic analyses of potential biosynthetic clusters and modern physicochemical techniques,” said David J. Newman, retired chief of the National Cancer Institute’s Natural Products Branch. “As a result of their work, the potential number of enediynes has significantly increased.”

Shen’s method of strain prioritization and genome mining means a far more efficient use of resources involved in the discovery process, targeting only those strains that look to produce the most important natural compounds.

“This study shows that the potential to rapidly discover new enediyne natural products from a large strain collection is within our reach,” said TSRI Research Associate Xiaohui Yan, one of four first authors of the study. “We also show the feasibility of manipulating tiancimycin biosynthesis in vivo, which means that sufficient quantities of these precious natural products can be reliably produced by microbial fermentation for drug development and eventual commercialization.”

In addition to Shen and Yan, first authors of the study, “Strain Prioritization and Genome Mining for Enediyne Natural Products,” include TSRI’s Huiming Ge, Tingting Huang and Hindra. Other authors include Dong Yang, Qihui Teng, Ivana Crnov?i?, Xiuling Li, Jeffrey D. Rudolf, Jeremy R. Lohman and Christoph Rader of TSRI; Yannick Gansemans and Filip Van Nieuwerburgh of Ghent University, Belgium; Yanwen Duan, Xiangcheng Zhu and Yong Huang of Xiangya International Academy of Translational Medicine, Central South University, China; Li-Xing Zhao and Yi Jiang of Yunnan University, China.

The study was supported in part by the Chinese Ministry of Education (111 Project B08034), National High Technology Joint Research Program of China (grant 2011ZX09401-001), National High Technology Research and Development Program of China (grant 2012AA02A705), the National Institutes of Health (grants CA78747 and GM115575), the German Research Foundation and the Arnold and Mabel Beckman Foundation.

This article was originally published on Scripps.edu.

About the Author
  • The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists-including two Nobel laureates-work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
You May Also Like
JUL 24, 2018
Cancer
JUL 24, 2018
Veterans with Cancer Get Streamlined Access to NCI Clinical Trials
Veterans with cancer, and the VA that cares for them, struggle to navigate the complex world of clinical trials but a collaborative agreement between VA and NCI could fix that....
SEP 11, 2018
Cannabis Sciences
SEP 11, 2018
New Evidence Shows Marijuana Smoke is Not the Same as Cigarette Smoke, at Least, in Terms of Lung Disease.
A recent report published in the journal Breathe by scientists in the UK suggests that chronic marijuana smoking may not cause the same deleterious effects...
SEP 13, 2018
Cancer
SEP 13, 2018
Breast tumors can stop their own metastasis
According to the American cancer society, metastatic breast cancers or stage 4 breast cancers have 5-years survival rate of 22% which is lower than at early stages. Metastatic breast cancer...
OCT 30, 2018
Drug Discovery
OCT 30, 2018
Re-sensitizing Drug-resistant Human Tumor Cells
Understanding how cancer cells avoid death despite their DNA being damaged will create new strategies to enhance cancer cell killing through chemotherapy t...
NOV 15, 2018
Drug Discovery
NOV 15, 2018
Making Cancer Disappear?
Neuroblastoma is one of the most common childhood cancers and the leading cause of cancer deaths among pediatric patients younger than 5. The cancer is fre...
DEC 09, 2018
Immunology
DEC 09, 2018
A Better Human Immune System: In Mice
We've cured cancer and autoimmune disease in mice many times over....
Loading Comments...