APR 06, 2015 10:25 AM PDT

New Anticancer Drug Target: RNA

WRITTEN BY: Robert Woodard
Computer graphic of an RNA moleculeMost of today's anticancer drugs target the DNA or proteins in tumor cells, but a new discovery by University of California, Berkeley, scientists unveils a whole new set of potential targets: the RNA intermediaries between DNA and proteins.

This RNA, called messenger RNA, is a blueprint for making proteins. Messenger RNA is created in the nucleus and shuttled out into the cell cytoplasm to hook up with protein-making machinery, the ribosome. Most scientists have assumed that these mRNA molecules are, aside from their unique sequences, generic, with few distinguishing characteristics that could serve as an Achilles heel for targeted drugs.

Jamie Cate, UC Berkeley professor of molecular and cell biology, and postdoctoral fellows Amy Lee and Philip Kranzusch have found, however, that a small subset of these mRNAs - most of them coding for proteins linked in some way to cancer - carry unique tags. These short RNA tags bind to a protein, eIF3 (eukaryotic initiation factor 3), that regulates translation at the ribosome, making the binding site a promising target.

"We've discovered a new way that human cells control cancer gene expression, at the step where the genes are translated into proteins. This research puts on the radar that you could potentially target mRNA where these tags bind with eIF3," Cate said. "These are brand new targets for trying to come up with small molecules that might disrupt or stabilize these interactions in such a way that we could control how cells grow."

These tagged mRNAs - fewer than 500 out of more than 10,000 mRNAs in a cell - seem to be special in that they carry information about specific proteins whose levels in the cell must be delicately balanced so as not to tip processes like cell growth into overdrive, potentially leading to cancer.
Surprisingly, while some of the tags turn on the translation of mRNA into protein, others turn it off.

"Our new results indicate that a number of key cancer-causing genes - genes that under normal circumstances keep cells under control - are held in check before the proteins are made," Cate said. "This new control step, which no one knew about before, could be a great target for new anticancer drugs.

"On the other hand," he said, "the tags that turn on translation activate genes that cause cancer when too much of the protein is made. These could also be targeted by new anticancer drugs that block the activation step."

The new results will be reported April 6 in an advance online publication of the journal Nature. Cate directs the Center for RNA Systems Biology, a National Institutes of Health-funded group developing new tools to study RNA, a group of molecules increasingly recognized as key regulators of the cell.

Source: phys.org
About the Author
You May Also Like
MAR 22, 2020
Cancer
MAR 22, 2020
What is "Shotgun ion mobility mass spectrometry sequencing"?
Research published recently in Nature Communications highlights a new method of mapping an essential family of polysacch ...
MAR 30, 2020
Cancer
MAR 30, 2020
Cervical cancer screening affected by natural disasters
It may not come as a surprise that public health is adversely affected by natural disasters and conflict. New research p ...
APR 07, 2020
Cancer
APR 07, 2020
Chemo drugs are leaking into our water
With cancer as the second leading cause of death globally, it comes as a surprise that we know very little up until now ...
APR 19, 2020
Drug Discovery & Development
APR 19, 2020
FDA Approves New Drug for Breast Cancer
The US Food and Drug Administration has approved a new drug, known as tucatinib or Tuksya, as a treatment for advanced f ...
APR 23, 2020
Cancer
APR 23, 2020
Dual Inhibition from One Chemotherapy
Acute Myeloid Leukemia, or AML, is an aggressive blood cancer with a poor 5-year prognosis. The primary targets of chemo ...
MAY 07, 2020
Cell & Molecular Biology
MAY 07, 2020
How the Function of a Critical Immune Cell is Related to Metabolism
This work suggests that it may be possible to dampen autoimmunity or promote an immune attack on cancer through a bioche ...
Loading Comments...