JUL 22, 2018 5:29 PM PDT

Using Nanosubmarines to Fight Tumors and Headaches

WRITTEN BY: Carmen Leitch

Therapies that aim to treat disease are often directed at the entire body; that can cause a host of unintended and unwanted side effects while diluting the impact of the drug on the intended target. Researchers have been trying to create better ways to deliver therapeutics directly to the place they’re needed most, and new work has moved us closer to that goal. A team of scientists at the Mainz University Medical Center and the Max Planck Institute for Polymer Research (MPI-P) engineered a nanocarrier, a miniature system that can attach a capsule of drugs to an immune cell, which can then attack tumors with more vigor. The goal is to use these kinds of nanocarriers to destroy tumors while leaving the healthy tissue that surrounds it intact.

This work has been reported in the journal Nature Nanotechnology. Learn more about the function of nanocarriers from the video.

The nanocarriers under development are smaller than one-thousandth of the width of a human hair, no longer visible with the naked eye. Special coatings are put on these nanocarriers, which contain molecules like antibodies, which allow the nanocarrier to identify its targets. The coatings also enable them to dock onto tissues that carry tumor cells inside them. After binding to the tumor-cell-containing tissue, they can release their therapeutic targets in the perfect place.

A new method for binding antibodies to these capsules has been developed by Professor Volker Mailänder and his team at the Department of Dermatology in the University Medical Center of Johannes Gutenberg University Mainz (JGU). "Up to now, we have always had to use elaborate chemical methods to bind these antibodies to nanocapsules," explained Mailänder. "We have now been able to show that all that you need to do is to combine antibodies and nanocapsules together in an acidified solution."

This new technique for joining antibodies and nanocapsules is about twice as efficient as other methods, and significantly improves the targeted delivery of therapeutic drugs. It was found that antibodies that were chemically coupled lost efficacy in the blood, but antibodies that weren’t chemically coupled retained their functionality.

"The standard method of binding antibodies using complex chemical processes can degrade antibodies or even destroy them, or the nanocarrier in the blood can become rapidly covered with proteins," noted Professor Katharina Landfester from the Max Planck Institute for Polymer Research. 

The team developed a way to use adsorption or adhesion to shield the antibodies. The nanocarrier became more stable and distributed drugs more effectively after this change.

The team is hopeful that this new technique will advance the application of nanotechnology-based disease therapeutics.


Sources: AAAS/Eurekalert! Via JGU, Nature Nanotechnology

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 14, 2020
Clinical & Molecular DX
Cell Line Authentication Using STR Analysis
SEP 14, 2020
Cell Line Authentication Using STR Analysis
Imagine you’re studying colon cancer using a colon cell line model. After three painstaking years of research, you ...
SEP 14, 2020
Cell & Molecular Biology
Learning More About How Cells Use Phase Separation
SEP 14, 2020
Learning More About How Cells Use Phase Separation
It was once thought that cellular machines called organelles, which are structures bound by membranes, directed most of ...
SEP 23, 2020
Immunology
Gene That Fuels Antibody Factories Discovered
SEP 23, 2020
Gene That Fuels Antibody Factories Discovered
Antibodies are Y-shaped proteins that play a central role in the immune system’s arsenal of germ-busting weapons. ...
OCT 14, 2020
Genetics & Genomics
Robots Are Moving Developmental Biology Forward
OCT 14, 2020
Robots Are Moving Developmental Biology Forward
Researchers have created a robot that can analyze the effects of mutations that occur in portions of the genome that hel ...
NOV 15, 2020
Microbiology
Monitoring a Virus in Real-Time as it Infects a Cell
NOV 15, 2020
Monitoring a Virus in Real-Time as it Infects a Cell
Hubrecht Institute researchers observe a virus as it invades a cell and competes with the host for control of the host c ...
NOV 23, 2020
Cell & Molecular Biology
Vibrations in Coronavirus Proteins Help Them Infect Cells
NOV 23, 2020
Vibrations in Coronavirus Proteins Help Them Infect Cells
If a key isn't cut quite right, it might need a special jiggle to get it into a lock in the right way. Scientists have n ...
Loading Comments...