JAN 05, 2019 08:52 AM PST

Insight Into the Molecular Basis of Differences in Male and Female Brains

WRITTEN BY: Carmen Leitch

Using a roundworm model, researchers have found a collection of genes that change how male and female brains develop and stimulate the start of puberty. This genetic pathway might act similarly in humans. The research, which was reported in the journal eLife, illustrates how neural development is different in the sexes. It may also help scientists understand how the wiring and function of male and female brains are different. 

The nervous system of male roundworms is distinct from that of females. Some of the neurons that only exist in one sex are labeled with green and red fluorescent proteins. / Credit: Laura Pereira and Esther Serrano-Saiz.

"In this paper we show that a pathway of regulatory genes acts within specific neurons to induce anatomical and functional differences in the male versus female brain," said the lead author of the study, Oliver Hobert, a professor in Columbia's Department of Biological Sciences and a Howard Hughes Medical Institute investigator. "Remarkably, we found that each member of this pathway is conserved between worms and humans, indicating that we have perhaps uncovered a general principle for how sexual brain differences in the brain are genetically encoded."

C. elegans is a transparent roundworm with a genome that shares many features with the human genome, and it’s a common research model. In this work, the team utilized C. elegans that carried a mutation in a gene called Lin28. Mutations in the gene have been linked to early-onset puberty in humans, which impacts around five percent of people. In addition, an excess of Lin28 expression has been connected to puberty delays.

"We knew the gene existed in humans, mice, and worms, but we didn't understand how it controlled the onset of puberty," Hobert said. "Did Lin28 work directly with the brain? In what tissue type? What other genes did Lin28 control?" 

The team assessed the mutant C. elegans and found that mutations in Lin28 also caused early-onset puberty in their model. Three other genes that are connected to premature sexual maturation were also identified, one of which is called Lin29.

Lin29 is only expressed in the brains and central neurons of males and shows that male and female brains are working differently. When males were missing their Lin29 gene, they looked like males, but the team found they behaved and moved like females. 

"If you look at animals, including humans, there are dramatic physical and behavioral differences between males and females, including, for example, how they move," Hobert explained. "The Lin29-deficient male worms, in essence, were feminized." 

For the first author of the study, Laura Pereira, a postdoctoral fellow in Columbia's Department of Biological Sciences, the research has shown that there are specific genes that control sex differences during neural development. "It opens up new questions about whether differences in male and female behavior is hardwired in our brains," she added.

The video above explores what we know about anatomical differences in male and female brains, why this research is important, and other information about the neuroanatomy of males and females. In the video below, Hobert gives a talk about using C. elegans as a research model.


Sources: AAAS/Eurekalert! via Columbia University, eLife

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 11, 2019
Cell & Molecular Biology
NOV 11, 2019
How the Kava Plant Creates Medicinal Compounds
Nature has given us some of our best medicines; it's thought that as many as half the drugs we used are derived from natural products....
NOV 11, 2019
Cell & Molecular Biology
NOV 11, 2019
Scientists Reveal how Pancreatic Cancer Evades Chemotherapy
Scientists at the University of Pennsylvania reveal answers to help better treat pancreatic cancer in the future....
NOV 11, 2019
Cell & Molecular Biology
NOV 11, 2019
Stem Cell Derived Natural Killer T Cells as Novel and Long-term Cancer Treatment
Hematopoietic stem cells are used to create a population of Natural Killer T-cells that could sustain and renew within the immune system, and attack cancer cells....
NOV 11, 2019
Infographics
NOV 11, 2019
Surface Plasmon Resonance (SPR) Technology
Surface plasmon resonance (SPR) allows researchers to investigate different types of biomolecular interactions and mechanisms in real-time and label-free....
NOV 11, 2019
Cell & Molecular Biology
NOV 11, 2019
The Different Signals Sent by Brown and White Fat
Scientists have now learned more about the molecules that brown fat releases....
NOV 11, 2019
Cell & Molecular Biology
NOV 11, 2019
Understanding How Skin Regeneration is Controlled
Our skin is a critical protective barrier, and has to constantly replenish and repair itself after damage or just normal wear and tear....
Loading Comments...