SEP 21, 2019 7:27 PM PDT

Insight Into the Epigenetic Mechanisms Controlling Cellular Identity

WRITTEN BY: Carmen Leitch

Our body is made up of many different kinds of cells that all carry the same genome in their nucleus. Every cell type has to carefully control which genes are active and expressing proteins so that it can carry out its special functions. For example, a heart cell will express genes that are important for heart function, while the cells in another organ like the liver might express different genes required for liver processes. Scientists at the University of Copenhagen and the Memorial Sloan Kettering Cancer Center have now learned more about a protein complex that can help regulate gene activity and maintain the identity of a cell.

The complex is shown in the video

This work, which has been reported in Molecular Cell, focused on the polycomb repressive complex 2 (PRC2). The complex can help reduce gene expression by adding a methyl group to a specific histone protein. The study can thus reveal more about how epigenetic factors influence gene expression.

"In addition, the results may have an impact on the future treatment of certain cancers related to the studied protein complex, including lymphoma, leukemia and a special type of brain cancer that is often seen in children," noted Kristian Helin, Professor at BRIC and Director of Research at the Memorial Sloan Kettering Cancer Center.

Professor Helin's team has been investigating the mechanisms controlling gene expression for several years. Their work has applications in many different fields of study including development and disease.

PRC2 is made up of some integral subunits as well as a few other proteins that are more loosely associated with it.  In this study, the researchers systematically eliminated each one in stem cells to look at the impact, and showed that all of them are involved in directing PRC2 to the right place in the genome where it should add the methyl group. However, it wasn’t until all six were removed that PRC2 lost the ability to find the right spot completely, in a surprise to the researchers.

"We assumed that each of the associated proteins was responsible for its own area to where the PRC2 complex should be guided. Instead, we saw that theyall contributed to the places where the complex binds. As long as just one of the associated proteins were left, the ability remained intact," explained the lead author of the report, postdoctoral researcher Jonas Højfeldt.

Sources: AAAS/Eurekalert! via University of Copenhagen The Faculty of Health and Medical Sciences, Molecular Cell

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 10, 2019
Immunology
DEC 10, 2019
T Cell Subset Uniquely Equipped to Target IBD
A specialized form of T cell emerges as a new focus for gastrointestinal health research, specifically in the context of inflammatory bowel disease (IBD) f...
DEC 25, 2019
Drug Discovery & Development
DEC 25, 2019
New Drug to Make Breast Cancer Treatment More Affordable
The US Food and Drug Administration has granted accelerated approval to new breast cancer drug, trastuzumab deruxtecan. The drug’s increasing recogni...
DEC 29, 2019
Cell & Molecular Biology
DEC 29, 2019
A Molecular Switch for Modulating Gene Therapy Doses
  Genetic errors cause many different kinds of diseases, and gene therapy has aimed to relieve those symptoms by addressing the root cause....
DEC 31, 2019
Genetics & Genomics
DEC 31, 2019
Should the Scientist Behind World's First Gene Edited Babies be in Prison?
He Jiankui, the scientist behind the world’s first gene-edited babies in 2018, has been sentenced to three years in prison by Chinese authorities for...
JAN 16, 2020
Cell & Molecular Biology
JAN 16, 2020
Understanding the Restorative Power of Sleep
Scientists have learned more about how sleep gets us ready to face the challenges of the day....
JAN 21, 2020
Cell & Molecular Biology
JAN 21, 2020
Repurposing Existing Drugs to Treat Cancer
Drugs have to be rigorously tested before they can be offered to patients, so it can be much easier to find more than one application for a medication....
Loading Comments...