FEB 17, 2020 11:12 AM PST

Scientists Learn Why Some Body Clocks Are Too Short

WRITTEN BY: Carmen Leitch

Some individuals are morning people to the extreme. Scientists have found that certain genetic mutations can impact the biological clock, and cause the bodies of individuals carrying those mutations to function on a 20-hour cycle instead of a 24-hour cycle. These genetic errors impact the physiology of organisms as varied as fruit flies and people. In new work reported in eLife, researchers have focused on mutations in a gene coding for an enzyme called CK1 (casein kinase 1), which controls the action of a critical body clock protein called PER or PERIOD.

Image credit: Pixabay

"Many people with sleep phase disorders have changes in their clock proteins," said corresponding study author Carrie Partch, associate professor of chemistry and biochemistry at UC Santa Cruz. "Generally, mutations that make the clock run shorter have a morning lark effect, and those that make the clock run longer have a pronounced night owl effect."

Kinases are enzymes that add a phosphate group to a protein, an action called phosphorylation; the PER2 protein can be phosphorylated at one of two places by CK1. If phosphorylation occurs at one site, PER is stabilized, and if the phosphate group is added at the other site, PER2 gets degraded. Mutations in either molecule disrupt this delicate balance, and degradation is favored over stabilization.

PER proteins play a role in a feedback loop, and their levels help set circadian rhythm timing. If mutations occur that cause more PER to be degraded, the clock's timing is thrown off balance.

"What we discovered is this neat molecular switch that controls the abundance of the PER proteins. When it's working right, it generates a beautiful 24-hour oscillation," Partch explained.

In vitro experiments by the Partch lab and confirmations by collaborators suggested that CK1 changes its shape, altering the dynamics of that switch. Mutations can cause CK1 to favor one shape over another. The CK1 protein contains an activation loop, and the loop's conformation changes how CK1 prefers to bind; one prefers to attach to cause degradation. The other conformation binds to a PER protein site called the FASP region. Mutations in this part of the protein are linked to a sleep disorder known as Familial Advanced Sleep Phase Syndrome.

FASP mutations disrupt PER and how CK1 binds. Mutations in CK1 can also interfere with how it binds PER. When CK1 binds to the FASP region, PER is stabilized, If the FASP region is phosphorylated, CK1 is inhibited, and can no longer trigger degradation.

"It binds and locks the kinase down, so it's like a pause button that prevents the PERIOD protein from being degraded too soon," Partch said. "This stabilizing region builds a delay into the clock to make it align with Earth's 24-hour day. Our results provide a mechanistic foundation to understand the essentially universal role of CK1 as a regulator of eukaryotic circadian clocks."

Sources: AAAS/Eurekalert! via University of California - Santa Cruz, eLife

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 21, 2020
Cell & Molecular Biology
JAN 21, 2020
Repurposing Existing Drugs to Treat Cancer
Drugs have to be rigorously tested before they can be offered to patients, so it can be much easier to find more than one application for a medication....
FEB 13, 2020
FEB 13, 2020
Protein that suppresses immune system linked to lupus
  A study published in Human Immunology has described, for the first time, a link between an immunosuppressive protein on the surface of T cells and t...
FEB 20, 2020
Cell & Molecular Biology
FEB 20, 2020
Fresh Insights Into the Inner Membrane of the Mitochondria
Structures called mitochondria are crucial for life; these small powerhouses generate energy for cells. Scientists have now learned more about these ancient organelles....
MAR 08, 2020
Genetics & Genomics
MAR 08, 2020
Zigzagging DNA
Cells have to store the entire genome in the nucleus, and this lengthy DNA molecule has to be carefully packaged by proteins to fit properly inside....
MAR 08, 2020
Drug Discovery & Development
MAR 08, 2020
DNA Origami Helps With Cancer Therapeutics
A study published in the Proceedings of the National Academy of Sciences, describes how researchers designed molecules known as "peptoid-coated DNA or...
MAR 25, 2020
Clinical & Molecular DX
MAR 25, 2020
A coronavirus testing kit with glow-in-the-dark Mango?
A group of Canadian researchers is responding to a desperate need for COVID-19 diagnostic kits with their fluorescent imaging technology, known as Mango. M...
Loading Comments...