APR 14, 2020 1:00 PM PDT

Combining Methods to Learn More About Protein Interactions

WRITTEN BY: Carmen Leitch

Proteins usually work together, whether as part of a pathway or a complex, and there are several ways to investigate protein interactions. Scientists have now combined several of these approaches to learn more about the relationship between neighboring surfaces in a protein complex called Sin3/HDAC. The complex has been implicated in cancer, and is a cancer treatment target. The work, published in Cell Reports, applied chemical crosslinking, high-resolution mass spectrometry, affinity tag purification, and computational modeling, and can be used for the study of other complexes in the future.

"Putting all these pieces together gives us a new perspective on how protein complexes are put together, "with the potential to provide more information more quickly," explained Michael Washburn, Ph.D., director of the Stowers Proteomics Center. "The capabilities have all existed, and have been used together a bit, but not in great numbers yet. It's certainly complementary to existing techniques such as nuclear magnetic resonance (NMR), cryo-electron microscopy (EM), and X-ray crystallography, to really understand how protein complexes assemble, and to see how are they really interacting. What happens when you perturb them with drugs or mutations?"

The Sin3/HDAC complex moves the histone deacetylases (HDACs) to specific locations in the genome, where they suppress gene expression by taking acetyl groups off of histone tails. While the various parts of the Sin3/HDAC complex are known, obtaining information about the entire complex has been challenging.

Mass spectrometry can identify molecules in a mixture, but it provides no information about how they interact, noted the co-first study author Charles Banks, Ph.D. There are also methods to assess an interaction between two proteins, but they can be time-consuming, he added."What would be really good is if we could capture some sort of structural information about the intact complex before we separate the proteins, and that's where crosslinking comes in," Banks explained.

The researchers used a chemical crosslinker called disuccinimidyl sulfoxide (DSSO), winch crosslinks lysine residues in protein complexes that are within around 30 angstroms of each other. That provides spatial information about the complex.

"If I see a crosslink between two lysine residues, that means in the fully intact folded protein, those lysines are quite close together, giving us positional information," explained Banks. "And if I've got two different proteins, and two lysine residues - one from each protein - crosslinked together, that means those lysines in those two proteins are usually very close together, which is consistent with the proteins interacting with each other."

The study revealed 66 crosslinks between proteins, and 63 crosslinks inside 13 subunits of Sin3 , which revealed the relative positions of 5 of the Sin3 scaffold subunits: SAP30L, HDAC1, SUDS3, HDAC2, and ING1.

"We think of Sin3A as a platform on which all the other subunits assemble," explained Banks. "We still aren't sure which subunits can bind to Sin3A at the same time, although we know that some of them certainly don't bind at the same time."

"But why are there all these other subunits other than the HDACs? Why can't you just recruit the HDACs?" he asked. "We think that probably, the Sin3 complexes control transcription of a specific set of genes, maybe at a specific time and place in specific cells, and we think the other subunits are probably governing that specificity."

Molecular modeling with crosslinking information is "like laying the foundation for getting the complete structure of really large complexes, which is hard to do," said Washburn.

"This is a convergence of technologies that allows us to, going forward, do this on really any protein complex under almost any circumstance...You just have to be able to purify it. If you can get enough material, you can really study any protein complex. It's a matter of doing good biochemistry and preparing a good sample. If you can get really spectacular data, you can build models like this," Washburn added. "I haven't been this excited about new capabilities in a long time."

Sources: AAAS/Eurekalert! via Stowers Institute for Medical Research, Cell Reports

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 01, 2022
Cell & Molecular Biology
How To Ship Your Lab Material Legally and Prevent Molecular Damage
JUN 01, 2022
How To Ship Your Lab Material Legally and Prevent Molecular Damage
How To Ship Your Lab Material Legally and Prevent Molecular Damage Written by Scott Weitze Shipping biological and molec ...
JUN 08, 2022
Cell & Molecular Biology
Some Bacteria Can Shed Their Wall When Infected with a Virus
JUN 08, 2022
Some Bacteria Can Shed Their Wall When Infected with a Virus
It was long thought that when the membrane of a cell lost its integrity and broke down, the cell would die; cells cannot ...
JUN 13, 2022
Microbiology
Mucus Contains Fungus-Fighting Molecules
JUN 13, 2022
Mucus Contains Fungus-Fighting Molecules
The human body plays host to a variety of microorganisms, including fungi like Candida albicans. Some strains of Candida ...
JUN 23, 2022
Cell & Molecular Biology
This Protein Can Stop the Flu From Replicating
JUN 23, 2022
This Protein Can Stop the Flu From Replicating
When viral pathogens like influenza infect cells, they can take over the machinery in the host cells that have been infe ...
JUL 17, 2022
Cell & Molecular Biology
In Cells, There is Phase Separation & Cluster Formation
JUL 17, 2022
In Cells, There is Phase Separation & Cluster Formation
Biomolecular condensates can concentrate important components of the cell together. But other structures form too.
AUG 08, 2022
Technology
Exploring cell processes with DNA-built 'Nano-Robot'
AUG 08, 2022
Exploring cell processes with DNA-built 'Nano-Robot'
In a recent study published in Nature Communications, researchers from Inserm, CNRS and Université de Montpellier ...
Loading Comments...