JUN 28, 2020 5:36 AM PDT

Insight Into How Dietary Changes Could Affect Cancer Therapies

WRITTEN BY: Carmen Leitch

Researchers are investigating the complex relationship between cancer, diet, and metabolism in cells, and are attempting to create a kind of map of cancer. This research can help reveal connections between how cancer grows and how to treat it. A recent study published in Cell, utilized an electrosurgical tool called the Intelligent Knife (iKnife). The device can detect cancer cells as it burns through tissue during a procedure, and has been used in breast cancer surgery to tell surgeons when they are cutting cancerous or healthy tissue only seconds after the cut starts. The smoke that is created by the iKnife (which does not contain viable cancer cells) carries chemicals that can be used for research and diagnostic purposes.

“A few years ago, a technology was introduced which was based on a very simple idea, to connect the electrosurgical device with a mass spectrometer and measure the ionization profile of the smoke that is being generated,” explained Dr. George Poulogiannis. “We wanted to explore if using this technology could gather even more detailed information about the biology of the cancer and the key drivers of the disease.”

The iKnife was developed by study author Professor Zoltan Takats at Imperial College London. 

The scientists began to screen samples from tumors, mouse models of cancer, and cancerous cell lines to look for links between metabolism and cancer. “When we did that, we observed something which at the beginning was quite strange,” noted Poulogiannis.

They found two groups of breast cancer samples, which were characterized by what fats were detected by the iKnife. But breast cancer cells are not classified in this way by clinicians, who usually look at the status of hormone receptors. Further study showed that these differences in fats were explained by the presence of a mutation in a gene that is involved in a cellular pathway called the PIK3CA pathway. Arachidonic acid is one of the fats that was found at high levels, and it can be made by cancer cells. It's also involved in the immune response to cancer.

“We then tried to find what was the mechanism behind it [the stratification of the samples and we found that some signaling pathways downstream of oncogenic PIK3CA regulate this overproduction of lipids. And the biomarker fatty acid that caught our attention was arachidonic acid, because this serves as the major hub of pro-inflammatory response in cancer. And this is a fatty acid we get both from the diet, and also PIK3CA mutant cancer cells have a unique ability to increase its production”

Drugs that disrupt the PIK3CA pathway were found to be far better at making tumors grow more slowly in a mouse model of breast cancer when the mice got a diet with no fatty acids. This research has now explained why the mutation causes some inhibitors to be ineffective, said Poulogiannis; it's probably because there's too much arachidonic acid.  

“I think this is one of the first few studies, or maybe even the first, that shows a dietary fat restriction plays a major role in therapy response.”

Sources: Cancer Research UK, Cell

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 25, 2021
Cell & Molecular Biology
How Fat Cells May Influence Cognitive Decline
OCT 25, 2021
How Fat Cells May Influence Cognitive Decline
Some research has indicated that a Western diet, which is high in processed foods, sugars, and fats, may be contributing ...
NOV 08, 2021
Clinical & Molecular DX
Sample Prep Possibilities: How to Gauge Your "Good Enough"
NOV 08, 2021
Sample Prep Possibilities: How to Gauge Your "Good Enough"
As scientists, we can be very uncomfortable with the concept of “good enough”. It feels contrary to everythi ...
OCT 31, 2021
Microbiology
Exploring the Mystery of Archaea in the Vertebrate Gut
OCT 31, 2021
Exploring the Mystery of Archaea in the Vertebrate Gut
Single celled organisms called archaea occupy their own branch on the tree of life, like bacteria, but we know a lot les ...
NOV 10, 2021
Cell & Molecular Biology
The Symmetry of Sea Stars Reveals More About Development
NOV 10, 2021
The Symmetry of Sea Stars Reveals More About Development
With time lapse photography, scientists have now learned more about the symmetry of sea stars. This work could tell us m ...
NOV 25, 2021
Cancer
Could an Anti-Cancer Drug Treat Diabetes?
NOV 25, 2021
Could an Anti-Cancer Drug Treat Diabetes?
Diabetes and cancer are two common diseases that share many similar risk factors. People with diabetes are also at& ...
DEC 01, 2021
Cell & Molecular Biology
Children Exposed to Famine Have a Lasting Epigenetic Impact
DEC 01, 2021
Children Exposed to Famine Have a Lasting Epigenetic Impact
Exposure to famine and prenatal exposure to famine has been consistently linked to a variety of health problems includin ...
Loading Comments...