OCT 23, 2015 10:27 AM PDT

Domestication of Lager-Brewing Yeasts

According to Benjamin Franklin “Beer is the proof that God loves us and wants us to be happy.” I am sure many of us agree since beer making has become a large industry, producing more than 100 gallons of beer per day worldwide. In the United States alone, $101.5 million in beer sales and $19.6 billion in craft beer sales was reported by the Brewers Association. The essential ingredients of beer include hops, water, malt, and yeast. Hops provide flavor and antimicrobial activity. Malt serves as a carbohydrate for the yeast. Yeast, most importantly, produces alcohol and carbon dioxide. Yeasts are microorganisms that raise, ferment, carbonate and transform a wide variety of products related to food and agriculture, including beer.
Yeasts that are used to ferment lager-style beers today are examples of highly successful, domesticated interspecies yeast hybrids.

Different species of yeast are used to produce different types of beer, such as ales and lagers. Saccharomyces cerevisiae is a yeast that grows on top of the beer mixture (known as a top-fermenter) and is used to produce ales. S. cerevisiae is also the yeast used to make bread. Saccharomyces carlsbergensis is a yeast that settles to the bottom of the beer mixture (known as a bottom fermenter) and was the yeast previously known to produce lagers.  

Yeasts that are used to ferment lager-style beers today are examples of highly successful, domesticated interspecies yeast hybrids. Hybrid lager strains account for 94% of the world lager brewing market. In the 1980s, the lager yeast typically referred to as S. carlsbergensis was determined to actually be an interspecies hybrid of S. cerevisiae and a second parental species. It has been hypothesized that this other parental strain is Saccharomyces eubayanus, described as an independent species in 2011 in association with Nothofagus trees in Patagonia.

A study published this month in Molecular Biology and Evolution by researchers at the University of Wisconsin and INIBIOMA in Argentina compared the genome of S. eubayanus to the genome of multiple domesticated yeast hybrids including the hybrids of S. eubayanus x S. cerevisiae currently used to ferment lager-style beers. Researchers found that S. eubayanus subgenomes had previously undergone a strong shift in selection regimes. This selection showed to be consistent with the domestication of the S. cerevisiae parent prior to hybridization.
S. carlsbergensis was determined to actually be an interspecies hybrid of S. cerevisiae and S. eubayanus.

Their results showed that the radically different genomes of the two lager species lineages favors at least two independent lineages for the S. eubayanus x S. cerevisiae hybrids used to producer lager style beers. These results show how this industrially important yeast hybrid has been domesticated along similar evolutionary pathways on multiple occasions.

Sources: Molecular Biology and Evolution; Food Microbiology (3rd Edition); Brewers Association
 
About the Author
  • I am a postdoctoral researcher with interests in pre-harvest microbial food safety, nonthermal food processing technologies, zoonotic pathogens, and plant-microbe interactions. My current research projects involve the optimization of novel food processing technologies to reduce the number of foodborne pathogens on fresh produce. I am a food geek!
You May Also Like
JUL 29, 2018
Microbiology
JUL 29, 2018
Revealing why Sepsis Causes Organs to Fail
The Staphylococcus aureus bacterium can cause devastating illnesses - called staph infections - and lead to organ failure....
AUG 28, 2018
Genetics & Genomics
AUG 28, 2018
A New Type of Cell is Discovered in the Human Brain
This cell type has never been observed in laboratory animals....
SEP 14, 2018
Cell & Molecular Biology
SEP 14, 2018
BPA Alternatives Have Dangers of Their Own
Plastics are found everywhere in our world, and they contain chemicals that pose a risk to our health when that plastic is damaged or aging....
OCT 01, 2018
Genetics & Genomics
OCT 01, 2018
Digging Into the Details of DNA Replication
Cells have to carry around a huge amount of genetic material, and usually that DNA is about 1000 times longer than the cell where it lives....
OCT 03, 2018
Cell & Molecular Biology
OCT 03, 2018
Single Cell Modified in CAR T Therapy Causes Deadly Relapse
One cell meant a very different outcome for a patient that was the recipient of a cutting-edge cancer therapy....
OCT 14, 2018
Videos
OCT 14, 2018
An Ancient Genetic Element can Help Fight Cancer
Researchers have been trying a variety of ways to boost the immune system we all have so it's able to fight off cancer....
Loading Comments...