OCT 24, 2015 12:23 PM PDT

The Role of Hydrogen Peroxide in Plant Programmed Cell Death

WRITTEN BY: Sarah Hertrich
The mechanism by which the plant immune system operates is through the detection of conserved microbial components such as flagella. The plant physiological response to biotic stressors (pathogens) can be due to activation of the induced systemic resistance (ISR) or systemic acquired resistance pathway (SAR). The SAR pathway is induced if the pathogen is able to elicit a hypersensitive reaction (HR) which involves the accumulation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) in the plant in order to rid itself of the infectious agent.

When a plant recognizes a stressor, such as a pathogen, plants will use ROS as signaling molecules and hormone signaling pathways are induced. ROS are produced in different compartments of the plant cell and each compartment can activate different signaling pathways. In general, ROS are removed from cells using scavenger enzymes such as catalase. Catalases detoxify hydrogen peroxide ROS, which is produced during photorespiration and photosynthesis. This makes photosynthesis an important part of the plant cellular redox state and therefore; may help protect plant cells as well as provide adaptation during stress or unfavorable environments.
Catalases detoxify hydrogen peroxide ROS, which is produced during photorespiration and photosynthesis.

 A recent report in BMC Genomics describes how scientists used catalase mutant Arabidopsis thaliana plants to determine their photosynthetic performance and hydrogen peroxide accumulation. Scientists found that several transcription factors and hormone regulators were essential for cell death to occur in the mutants. They were also able to identify a core set of plant cell death regulators.

While plant defense pathways are undoubtedly complex, this research lays the foundation for future study on how hydrogen peroxide is involved in cell death. Plant signaling hormones including salicylic acid, jasmonic acid and auxin all play a critical role in this process. Ultimately this work will help determine better ways plants can be engineered to resist disease.  

Sources: BMC Genomics; Nature
 
About the Author
  • I am a postdoctoral researcher with interests in pre-harvest microbial food safety, nonthermal food processing technologies, zoonotic pathogens, and plant-microbe interactions. My current research projects involve the optimization of novel food processing technologies to reduce the number of foodborne pathogens on fresh produce. I am a food geek!
You May Also Like
MAY 10, 2020
Genetics & Genomics
Towards a Targeted Elimination of Leukemic Cells
MAY 10, 2020
Towards a Targeted Elimination of Leukemic Cells
Our blood carries many types of critical cells, including platelets, red blood cells, and white blood cells, which are m ...
MAY 11, 2020
Cell & Molecular Biology
3D Cell Culture Model Suggests Herpes Can Cause Alzheimer's
MAY 11, 2020
3D Cell Culture Model Suggests Herpes Can Cause Alzheimer's
Alzheimer's is a common form of dementia that affects as many as 5.5 million Americans and the incidence is increasing a ...
MAY 19, 2020
Genetics & Genomics
A Faster Way to Identify New Cell Types
MAY 19, 2020
A Faster Way to Identify New Cell Types
It's important to be able to identify the types of cells that are present in a tissue and how they behave in order to ha ...
MAY 20, 2020
Genetics & Genomics
Native Americans Have an Ancient Connection to Lake Baikal
MAY 20, 2020
Native Americans Have an Ancient Connection to Lake Baikal
People have lived around Lake Baikal, the world's deepest and oldest lake, for thousands of years.
MAY 27, 2020
Cell & Molecular Biology
A Deeper Understanding of How Some Bacterial Toxins Interact With Cells
MAY 27, 2020
A Deeper Understanding of How Some Bacterial Toxins Interact With Cells
The surfaces of cells are decorated with receptors, and the interactions between receptors and their binding partners ar ...
JUN 06, 2020
Immunology
Cancer Cell Clusters Better At Resisting the Immune System
JUN 06, 2020
Cancer Cell Clusters Better At Resisting the Immune System
For cancerous cells in the body, it seems there is safety in numbers. Researchers from a newly published study investiga ...
Loading Comments...