MAR 09, 2015 1:54 PM PDT

Scientists Reveal Structural Secrets of Nature's Little Locomotive

WRITTEN BY: Judy O'Rourke
A team led by scientists at The Scripps Research Institute (TSRI), La Jolla, Calif, has determined the basic structural organization of a molecular motor that hauls cargoes and performs other critical functions within cells.

Biologists have long wanted to know how this molecular motor-called the "dynein-dynactin complex"-works. But the complex's large size, myriad subunits and high flexibility have until now restricted structural studies to small pieces of the whole.
The new research provides the first picture of a molecular motor called the
In the new research, however, TSRI biologist Gabriel C. Lander, PhD, and his lab, in collaboration with Trina A. Schroer, PhD, and her group at Johns Hopkins University, created a picture of the whole dynein-dynactin structure.

"This work gives us critical insights into the regulation of the dynein motor and establishes a structural framework for understanding why defects in this system have been linked to diseases such as Huntington's, Parkinson's, and Alzheimer's," Lander says.

The findings are reported in a Nature Structural & Molecular Biology advance online publication on March 9.

The proteins dynein and dynactin normally work together on microtubules for cellular activities such as cell division and intracellular transport of critical cargo such as mitochondria and mRNA. The complex also plays a key role in neuronal development and repair, and problems with the dynein-dynactin motor system have been found in brain diseases including Alzheimer's, Parkinson's, and Huntington's diseases, and amyotrophic lateral sclerosis (ALS). In addition, some viruses (including herpes, rabies and HIV) appear to hijack the dynein-dynactin transport system to get deep inside cells.

The structural data clarify how dynein and dynactin fit together on a microtubule, how they recruit cargoes, and how they manage to move those cargoes consistently in a single direction.

[Source: TSRI]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
MAR 17, 2020
Microbiology
MAR 17, 2020
A Toxin Produced by C.difficile Can Damage Intestinal Stem Cells
Intestinal stem cells help regenerate the lining of the intestine, and that lining or epithelium plays a number of criti ...
APR 15, 2020
Cell & Molecular Biology
APR 15, 2020
Sugar's Appeal Lies in a Circuit That Connects the Gut & Brain
New work may help explain why sugar cravings are so hard to satisfy.
APR 23, 2020
Cardiology
APR 23, 2020
Arteries Respond in Different Ways in Females and Males
Exploring Arterial Smooth Muscle Kv7 Potassium Channel Function using Patch Clamp Electrophysiology and Pressure Myograp ...
MAY 05, 2020
Cell & Molecular Biology
MAY 05, 2020
Preprint Suggests Sars-CoV-2 Mutation Makes it More Transmissable
Samples obtained from patients from all over the world have been used to sequence the genomes of the viral strains infec ...
MAY 16, 2020
Neuroscience
MAY 16, 2020
Stem Cell Method (Parkinson's) Could Avoid Transplant Rejection
Researchers at McLean Hospital and Massachusetts General Hospital (MGH) have tested a stem cell treatment method that av ...
MAY 22, 2020
Cell & Molecular Biology
MAY 22, 2020
Some Coral Turn Neon When Stressed
Corals are immobile animals, and coral reefs are considered to be the most diverse ecosystems in the sea.
Loading Comments...