DEC 05, 2016 11:57 AM PST

microRNA Provides Insight Into the Mechanisms of Schizophrenia

WRITTEN BY: Carmen Leitch
Reporting in Nature Medicine, scientists at St. Jude Children's Research Hospital have determined that a small piece of RNA, a microRNA, could be critical to maintaining the proper function of brain circuitry that is associated with the ‘voices’ and other hallucinations that plague those suffering from schizophrenia. This microRNA may provide a basis for the creation of novel antipsychotic drugs.

According to the National Institute of Mental Health, schizophrenia may cause people to feel they have lost touch with reality, and can affect the way a person feels, how they behave and what they think. While not as common as many other psychiatric disorders, it can be debilitating. The short video above explains more about schizophrenia.

Genes can be regulated by over 2,000 microRNAs that therefore can manipulate the corresponding protein levels in cells. A mouse model enabled the researchers to determine that a microRNA called miR-338-3pi regulates the levels of the D2 dopamine receptor (Drd2), which is also the primary target of antipsychotic drugs.

"In 2014, we identified the specific circuit in the brain that is targeted by antipsychotic drugs. However, the existing antipsychotics also cause devastating side effects," explained the corresponding author of the report, Stanislav Zakharenko, M.D., Ph.D., a member of the St. Jude Department of Developmental Neurobiology. "In this study, we identified the microRNA that is a key player in disruption of that circuit and showed that depletion of the microRNA was necessary and sufficient to inhibit normal functioning of the circuit in the mouse models.
ViewRNA assay for detection of miR-133 microRNA (green) - illustrative purposes / Credit: Wikimedia Commons Ryan Jeffs

"We also found evidence suggesting that the microRNA, named miR-338-3p, could be targeted for development of a new class of antipsychotic drugs with fewer side effects."

This work utilized a mouse model of 22q11 syndrome, in which a genetic deletion in chromosome 22 occurs. Human patients with the deletion are missing the second copy of over 25 genes from that region. One of those genes, Dgcr8, helps produce microRNAs. Patients are at risk for behavioral problems when they are young, and between 23 and 44 percent develop schizophrenia. You can view a talk from MIT about mouse genetic models of schizophrenia here

Adding to previous research, the new data from the mouse model provides new insight into the molecular mechanisms that impairs the brain circuit and interrupts signals moving along a neural connection where two regions of the brain meet. Those brain regions are involved in the processing of auditory information.

Using the mice, the investigators have correlated the 22q11 deletion syndrome and loss of one copy of Dgcr8 with age-related loss of miR-338-3p in the auditory thalamus. Along with the loss of the microRNA, increases in Drd2 and increased activity in a circuit linking the auditory cortex and thalamus were observed. That circuit is associated with auditory hallucinations.

The loss of miR-338-3p does not seem to affect other brain circuitry in the mutant mice. In fact, the level of miR-338-3p was higher in the thalamus than most other regions. Adding miR-338-3p to the auditory thalamus of the mice rescued the circuit dysfunction, and reduced Drd2 levels.  Antipsychotic drugs targeting Drd2 were also able to restore normal activity to the circuit.

This work provides new clues into the mechanism of age-related delay of schizophrenia onset. The researchers noted that while microRNA levels decline in mice as they age, mutant mice started off with lower miR-338-3p levels.

"A minimum level of the microRNA may be necessary to prevent excessive production of the Drd2 that disrupts the circuit," Zakharenko said. "While miR-338-3p levels decline as normal mice age, levels may remain above the threshold necessary to prevent overexpression of the protein. In contrast, the deletion syndrome may leave mice at risk for dropping below that threshold."

If you would like to know more about microRNAs, check out the video above with David Bartel, a Howard Hughes Medical Investigator at the Whitehead Institute of MIT.

Sources: NIMH, MIT, Current Psychiatry ReportsAAAS/Eurekalert! via St. Jude Research, Nature Medicine
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 16, 2019
SEP 16, 2019
Self-Destructing Cancer: Study Stops Chain Reaction of Tumor Growth
A new study reveals that stopping one protein from functioning can cause some cancer cells to die from stress....
SEP 16, 2019
SEP 16, 2019
Cigarette Smoke can Increase the Pathogenicity of Microbes
Strains of MRSA can become more resistant to antibiotics when exposed to cigarette smoke....
SEP 16, 2019
Genetics & Genomics
SEP 16, 2019
Revealing the Epigenetic Patterns That Specific Enzymes Create
Genomic DNA is modified by chemical markers called epigenetic tags, which can change gene expression without altering the underlying genetic code....
SEP 16, 2019
Genetics & Genomics
SEP 16, 2019
Do You Inherit Your Morals?
Morality is usually a subject discussed by philosophers, not biologists. But is it really a purely philosophical issues? After all, what makes us more susc...
SEP 16, 2019
Cell & Molecular Biology
SEP 16, 2019
Investigating the Formation of Membrane-less Organelles
The cytoplasm of cells is about 80% water, but is full of a molecular mixture of stuff that was once thought to be disorganized and random....
SEP 16, 2019
SEP 16, 2019
Bioprinting Complex Tissues
Tissue engineering is a quickly growing field that involves the development of artificial organs and tissues that can be utilized to test the efficacy of d...
Loading Comments...