DEC 05, 2016 4:11 PM PST

Biofilm Research Tool, Molecular Chameleons, Created

WRITTEN BY: Carmen Leitch
Researchers working at the Karolinska Institutet have made a breakthrough that will aid scientists studying biofilms. They have created chemicals they call molecular chameleons, which can bind to components of biofilms and emit colors at various wavelengths as they change shape. The scientists do a very nice job describing their work in the following short video.
 

 
There are not a lot of good tools for researching bacterial biofilms, a colony of microbes that adheres to a surface and usually oozes a slimy matrix. Until now, there has not even been a protocol for detecting biofilms; while it is possible to see bacteria, the extracellular matrix is observed with dyes that bind in a non-specific way to molecules with charge, such as DNA and bacterial proteins. However, that inferior staining method quickly causes cell death.
 
Biofilms can and do form on many things, like the surface of stagnant water, medical devices implanted in patients or the tile in our bathrooms. Pathogenic biofilms can be very dangerous and are involved in many infections that cause illness. They have been implicated in health problems like gingivitis and ear infections, and must be managed during wound healing. Understandably, there is a need to understand more about them.
 
Electron micrograph depicting large numbers of Staphylococcus aureus bacteria  on the luminal surface of an indwelling catheter./ Credit: CDC
 
The new tool has a particular appearance depending on what they are bound to. One portion can emit light while another binds to a specific molecule in the biofilm. The molecular chameleons change color after they bind the matrix, and they are non-toxic.
 
"The molecules we have developed are unique in that they can send out different colors, depending on how they twist and bend. We usually call them molecular chameleons, because they change color according to the environment," explained Professor Peter Nilsson, Linköping University. His research team synthesized the tracking molecules.
 
"This is the first method that specifically dyes the biofilm components. This means that researchers who want to study the mechanisms behind how bacteria form biofilms now have a new tool to understand the process," said the leader of the work, Professor Agneta Richter-Dahlfors at Karolinska Institutet.
 
In their report, published in Nature partner journal Biofilms and Microbiomes, the investigators show how their technique can be utilized for the study of Salmonella bacteria in both infected tissue and in the lab.
 
The scientists would like to see their research improve biofilm detection in biomedical research and the healthcare and food industries in order to reduce health risks to the public. There might also be applications in areas where the formation of a biofilm is a positive development, such as in the production of biogas from bacteria.
 
"We are very excited to be able to provide this new tool for microbial researchers to be able to use and we are looking forward to seeing new results in the near future,” concluded Professor Richter-Dahlfors.
 
Sources: Emerging Infectious Diseases, AAAS/Eurekalert! via Karolinska Institutet, Biofilms and Microbiomes
 
About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 23, 2020
Microbiology
How Microbes Can Help Clean a Toxic River
AUG 23, 2020
How Microbes Can Help Clean a Toxic River
Some places in the United States have become dangerously polluted with hazardous waste. The EPA oversees a program that ...
AUG 24, 2020
Cell & Molecular Biology
A Shield Surrounds the Flexible SARS-CoV-2 Spike Protein
AUG 24, 2020
A Shield Surrounds the Flexible SARS-CoV-2 Spike Protein
Researchers know that the viruses including SARS-CoV-2 have a Spike protein that allows them to bind to receptors on hos ...
OCT 06, 2020
Microbiology
Scarlet Fever 'Superclones' Pose Rising Public Health Threat
OCT 06, 2020
Scarlet Fever 'Superclones' Pose Rising Public Health Threat
More than 100 years ago, the world faced waves of scarlet fever epidemics; between around 1820 and 1880 there were sever ...
OCT 13, 2020
Microbiology
Bacterial Biofilms Can Take on Some Animal-Like Characteristics
OCT 13, 2020
Bacterial Biofilms Can Take on Some Animal-Like Characteristics
Bacteria are everywhere, even inside of our bodies, and they are thought to date back to the early days of life on Earth ...
NOV 09, 2020
Microbiology
Fighting COVID-19 with Help From Llamas
NOV 09, 2020
Fighting COVID-19 with Help From Llamas
Camelids, which include llamas, alpacas and camels have immune systems that generate two kinds of antibodies when confro ...
NOV 14, 2020
Microbiology
The Structure of a Bacteriophage DNA Tube is Revealed
NOV 14, 2020
The Structure of a Bacteriophage DNA Tube is Revealed
Some viruses only infect bacteria; they care called bacteriophages or phages for short. As antibiotic-resistant bacteria ...
Loading Comments...