JAN 11, 2017 04:46 PM PST

Insight Into how Cancer Cells Overcome Abnormalities & Grow

WRITTEN BY: Carmen Leitch

In the following video from the Francis Crick Institute, you can get a look at why cancer cells are able to proliferate rapidly despite chromosomal abnormalities. It is based on two new papers, one published in Cancer Cell and one in Cancer Discovery.

Normally, healthy cells will self-destruct if it has genetic damage that can’t be fixed, and that damages DNA won’t be passed on. In cancer cells, however, where there is myriad genetic disorder, they are still able to replicate and spread. During their growth they are also able to evade treatment strategies.

One of the studies, in Cancer Discovery, showed that cancerous cells have to avoid accumulating too much damage, as there seems to be a limit to what is tolerable. In that work, researchers reported that cancer cells are able to get by while carrying myriad chromosomal abnormalities because of a slowdown in cellular machinery called APC/C. The cancerous cells can thus get away without making too many mistakes with their daughter cells, increasing genetic diversity in a tumor.

"The development and progression of cancer is fuelled by an unstable genome. It can cause a high degree of diversity between cells, influencing how well treatments work and drug resistance. If a cancer cell can cope with large scale changes to its DNA then it might gain an advantage that helps it to grow, spread and survive treatment. Until now, we knew very little about how these cancer cells kept growing and evolving,” said Professor Charles Swanton, who led the research team at the Francis Crick Institute in London.

"We hope that understanding these mechanisms will allow us to limit drug resistance and improve the efficacy of cancer therapies," he continued.

The other work, in Cancer Cell, showed an increase in mutations in a specific gene in cancerous bowel cells. In normal cells, that gene, BCL9L, helps activate a protein involved in the cell’s self-destruct mechanism. When BCL9L was inactivated, cells with an uneven number of chromosomes were able to continue otherwise normal growth.

In patients that carry tumor cells with an incorrect number of chromosomes, there can be worse outcomes because of cancer evolution and resistance to drug therapies.

"These two studies reveal more about how cancer cells are able to survive with a genetic makeup that would lead to the death of normal cells. This opens the door to potentially exciting new ways to target cancer cells - by exploiting the genetic chaos that lies at the heart of some cancers,” commented Professor Karen Vousden, Chief Scientist at Cancer Research UK.

 

Sources: Francis Crick Institute, Cancer Cell, Cancer Discovery

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 30, 2018
Drug Discovery
OCT 30, 2018
Re-sensitizing Drug-resistant Human Tumor Cells
Understanding how cancer cells avoid death despite their DNA being damaged will create new strategies to enhance cancer cell killing through chemotherapy t...
NOV 05, 2018
Neuroscience
NOV 05, 2018
Stress: Men Vs. Women
Undersatnding the gender specific differences in response to stress...
NOV 06, 2018
Genetics & Genomics
NOV 06, 2018
New Gene is Implicated in a Rare Cancer
Rodents are known as common research models, but zebrafish have been gaining ground as an attractive alternative for many reasons....
NOV 08, 2018
Cell & Molecular Biology
NOV 08, 2018
Ancient Animal Provides a New Window Into Tissue Cohesion
Trichoplax adhaerens has no muscles, neurons, or defined shape but still makes coordinated movement....
NOV 25, 2018
Microbiology
NOV 25, 2018
Researchers Learn How Hantavirus Infects Cells
First identified in 1993, hantavirus infections can cause dangerous and potentially deadly respiratory infections....
DEC 08, 2018
Cell & Molecular Biology
DEC 08, 2018
Regenerating Beta Cells to Cure Diabetes
Beta cells of the pancreas produce a critical hormone that controls blood sugar - insulin. But beta cells can die off....
Loading Comments...