JAN 14, 2017 7:47 AM PST

TFEB Gene Regulates Muscle Cell Activity During Exercise

WRITTEN BY: Carmen Leitch

Scientists are always striving to know more about the physiology of exercise, especially as health conditions related to obesity become an ever greater threat to public health around the world. Researchers at Baylor College of Medicine working in collaboration with investigators from the Telethon Institute of Genetics and Medicine in Naples, Italy and other institutions have learned that a certain gene called TFEB has a major role in the control of muscle function during exercise. They found that exercise drives the TFEB gene into the nucleus of muscle cells, and there it governs the molecular cascades that feed energy to the muscle by exerting an effect on chemicals like insulin, molecules involved in glucose regulation, and the action of the mitochondria. This research could potentially aid in the development of therapeutics for disorders like obesity, metabolic disease and diabetes.

TFEB acts as a central coordinator of skeletal muscle insulin sensitivity, glucose homeostasis, lipid oxidation, and mitochondrial function in the adaptive metabolic response to physical exercise in a PGC1a-independent manner. / Credit: Mansueto et al., 2017, Cell Metabolism 25, 1-15

The investigators involved in this work have previously learned that the TFEB gene has a role in the regulation of the cellular response to starvation. Their new research, published in Cell Metabolism, indicates another role for the gene. TFEB is a molecule that works to control the expression of other genes - a transcription factor.

"In this study we found that TFEB controls the response of the body to physical exercise," said co-senior author Dr. Andrea Ballabio, a Professor of Molecular and Human Genetics at Baylor and Director of the Telethon Institute of Genetics and Medicine. "TFEB plays a central role by regulating the expression of genes that allow muscle cells to use energy."

A mouse model was utilized in order to learn more about the action of TFEB. The ablation of the TFEB gene in mice caused the affected mice to experience difficulty when exercising; they could not keep it up. Looking at why that was happening, the investigators looked at the muscle cells of the mice and saw that the mitochondria did not look right and were not functioning properly. Muscle cells were not getting the right amount of energy to perform normally.

When the researchers did the opposite in mice and caused the TFEB gene to express more than they normally would, the muscle cells contained normal mitochondria, which showed an increase in the amount of energy being produced. These were surprising findings for them. "TFEB had not been associated with how cells use energy before," Ballabio explained.

"This work is the product of a very fruitful international collaboration among researchers in laboratories in Italy, the UK, China and the U.S.," commented Ballabio. "Our discovery of a central pathway that regulates muscle metabolism, use of glucose and mitochondrial function may have important implications in the study of diseases such as obesity and diabetes, as well as in a number of diseases in which muscle function is compromised."

The researchers would now like to find drugs that could exert an effect on this pathway, and may thus help to identify novel strategies for the treatment of various metabolic diseases.

The video above contains an interview with Andrea Ballabio, winner of the 2016 Louis-Jeantet Prize for Medicine.

 

Sources: AAAS/Eurekalert! via Baylor College of Medicine, Cell Metabolism

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 23, 2021
Microbiology
A Causal Connection Between C-Section Births & Food Allergies
APR 23, 2021
A Causal Connection Between C-Section Births & Food Allergies
The microbes that live in the human gut have a powerful influence on our health, and that microbial community is with us ...
MAY 11, 2021
Genetics & Genomics
Gene Therapy Trial for Severe Immune Disorder is Successful
MAY 11, 2021
Gene Therapy Trial for Severe Immune Disorder is Successful
Severe combined immunodeficiency (SCID), which virtually eliminates a patient's immune system, and severely affects thei ...
MAY 25, 2021
Genetics & Genomics
Mitochondrial Dysfunction May Raise Schizophrenia Risk in 22q Patients
MAY 25, 2021
Mitochondrial Dysfunction May Raise Schizophrenia Risk in 22q Patients
A disorder called 22q11.2 deletion syndrome (22q) affects about one in 2,000 births, and causes dysfunction in every org ...
JUN 09, 2021
Cell & Molecular Biology
Mechanism Linking Neurodegeneration & Brain Injury May Open Treatment Options
JUN 09, 2021
Mechanism Linking Neurodegeneration & Brain Injury May Open Treatment Options
Studies have shown that there is a link between blows to the head and neurodegeneration. Repeated head trauma is associa ...
JUN 08, 2021
Neuroscience
Simple Blood Test Can Detect Depression and Underlying Neurodegeneration
JUN 08, 2021
Simple Blood Test Can Detect Depression and Underlying Neurodegeneration
Researchers led by King’s College London have found that levels of a protein known as neurofilament light chain (N ...
JUN 20, 2021
Genetics & Genomics
Revealing Epigenetic Causes of Type 1 Diabetes
JUN 20, 2021
Revealing Epigenetic Causes of Type 1 Diabetes
Our bodies have to regulate the level of glucose, or sugar, in the blood. The hormone insulin, produced by beta cells in ...
Loading Comments...