JAN 14, 2017 07:47 AM PST

TFEB Gene Regulates Muscle Cell Activity During Exercise

WRITTEN BY: Carmen Leitch

Scientists are always striving to know more about the physiology of exercise, especially as health conditions related to obesity become an ever greater threat to public health around the world. Researchers at Baylor College of Medicine working in collaboration with investigators from the Telethon Institute of Genetics and Medicine in Naples, Italy and other institutions have learned that a certain gene called TFEB has a major role in the control of muscle function during exercise. They found that exercise drives the TFEB gene into the nucleus of muscle cells, and there it governs the molecular cascades that feed energy to the muscle by exerting an effect on chemicals like insulin, molecules involved in glucose regulation, and the action of the mitochondria. This research could potentially aid in the development of therapeutics for disorders like obesity, metabolic disease and diabetes.

TFEB acts as a central coordinator of skeletal muscle insulin sensitivity, glucose homeostasis, lipid oxidation, and mitochondrial function in the adaptive metabolic response to physical exercise in a PGC1a-independent manner. / Credit: Mansueto et al., 2017, Cell Metabolism 25, 1-15

The investigators involved in this work have previously learned that the TFEB gene has a role in the regulation of the cellular response to starvation. Their new research, published in Cell Metabolism, indicates another role for the gene. TFEB is a molecule that works to control the expression of other genes - a transcription factor.

"In this study we found that TFEB controls the response of the body to physical exercise," said co-senior author Dr. Andrea Ballabio, a Professor of Molecular and Human Genetics at Baylor and Director of the Telethon Institute of Genetics and Medicine. "TFEB plays a central role by regulating the expression of genes that allow muscle cells to use energy."

A mouse model was utilized in order to learn more about the action of TFEB. The ablation of the TFEB gene in mice caused the affected mice to experience difficulty when exercising; they could not keep it up. Looking at why that was happening, the investigators looked at the muscle cells of the mice and saw that the mitochondria did not look right and were not functioning properly. Muscle cells were not getting the right amount of energy to perform normally.

When the researchers did the opposite in mice and caused the TFEB gene to express more than they normally would, the muscle cells contained normal mitochondria, which showed an increase in the amount of energy being produced. These were surprising findings for them. "TFEB had not been associated with how cells use energy before," Ballabio explained.

"This work is the product of a very fruitful international collaboration among researchers in laboratories in Italy, the UK, China and the U.S.," commented Ballabio. "Our discovery of a central pathway that regulates muscle metabolism, use of glucose and mitochondrial function may have important implications in the study of diseases such as obesity and diabetes, as well as in a number of diseases in which muscle function is compromised."

The researchers would now like to find drugs that could exert an effect on this pathway, and may thus help to identify novel strategies for the treatment of various metabolic diseases.

The video above contains an interview with Andrea Ballabio, winner of the 2016 Louis-Jeantet Prize for Medicine.

 

Sources: AAAS/Eurekalert! via Baylor College of Medicine, Cell Metabolism

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 21, 2019
Genetics & Genomics
SEP 21, 2019
Lipid Nanoparticles Improve the Delivery of CRISPR/Cas9 Into Cells
The CRISPR/Cas9 gene editing tool has revolutionized biomedical research and has tremendous potential for use in the clinic....
SEP 21, 2019
Microbiology
SEP 21, 2019
How a Magnetic Bacterium Creates a Compass Needle
There are organisms that can use the magnetic field of the earth to navigate, including animals like honey bees and migratory birds, and some bacteria....
SEP 21, 2019
Cell & Molecular Biology
SEP 21, 2019
How Neutrophils are Involved in Gallstone Formation
Gallstones form in the gallbladder, and can be as tiny as a grain of sand or as big as a golf ball....
SEP 21, 2019
Genetics & Genomics
SEP 21, 2019
Insights Into the Mechanisms Controlling Pluripotency
Scientists have long wanted to harness the regenerative power of pluripotent stem cells....
SEP 21, 2019
Microbiology
SEP 21, 2019
Antidepressants and Serotonin Impact Gut Microbiota
About 90% of the serotonin found in the human body is made in the gut. Some bacteria can encourage the release of serotonin from gut cells....
SEP 21, 2019
Immunology
SEP 21, 2019
New Observations of a Cancer Transcriptase
New research shows a transcriptase that helps time cell death varies in expression, and is unusually localized, in cancer cells.  The transcriptase, T...
Loading Comments...