MAY 22, 2017 7:54 PM PDT

Lung Organoids are Similar to the Full-size Organ

WRITTEN BY: Carmen Leitch

Studying human disease in the laboratory is hampered by difficulties modeling the disease. It’s very unusual for humans to be used as test subjects, so researchers instead rely on animal models and cells in dishes. Those dishes of cells have recently been engineered to be a lot more complex, forming three-dimensional structures that function similarly to human organs - organoids. In a breakthrough, scientists have now developed organoids of lungs using human pluripotent stem cells.

Researchers at Columbia University Medical Center (CUMC) utilized the organoids they made to model human lung disease in a lab. The work, reported in Nature Cell Biology, may lead to advancements in our understanding of respiratory disease. Above is a video summarizing the findings.

Organoids open up new research possibilities for scientists. Beyond developing a deeper understanding of the normal development and function of an organ, they also offer the chance to visualize dysfunction in those organs happens and what the consequences are, under more lifelike conditions. Experimentation with therapeutics and regeneration is also possible with organoids, potentially leading to better outcomes.

"Researchers have taken up the challenge of creating organoids to help us understand and treat a variety of diseases," explained lead investigator Hans-Willem Snoeck, PhD, a Professor of medicine (in Microbiology & Immunology) at CUMC. "But we have been tested by our limited ability to create organoids that can replicate key features of human disease."

Bright-field images of day 50 LBO-derived Matrigel colonies from RUES2 cells. Representative of six independent experiments. Scale bars, 500?μm. / Credit: Snoeck lab/Columbia University Medical Center

The lung organoids that were engineered in Snoeck's lab are the first to feature branching airway and alveolar structures, as human lungs do.

AS a proof-of-concept, the investigators demonstrated that the organoids behaved in a way that was very much like what a real lung would do if infected with respiratory syncytial virus (RSV). In infants, RSV is a primary cause of lower respiratory tract infection; there is no vaccine or effective therapy against the disorder.

The scientists also showed that the organoids acted like a human lung would when they were carrying a gene mutation that has been linked to pulmonary fibrosis. Idiopathic pulmonary fibrosis is a disorder that leads to scarring in the lungs and is responsible for 30,000 to 40,000 deaths in the United States every year. The only cure for this disease is a lung transplant.

"Organoids, created with human pluripotent or genome-edited embryonic stem cells, may be the best, and perhaps only, way to gain insight into the pathogenesis of these diseases,” concluded Snoeck.


 

Sources: AAAS/Eurkealert! via CUMC, Nature Cell Biology

 

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 15, 2020
Neuroscience
Neurometabolism: A bold, new frontier
OCT 15, 2020
Neurometabolism: A bold, new frontier
Billions of neurons communicate with each other through trillions of synapses to create a functioning, unique system we ...
OCT 24, 2020
Genetics & Genomics
Cord Blood Samples Reveal More About the Genetics of Autism
OCT 24, 2020
Cord Blood Samples Reveal More About the Genetics of Autism
The activity of genes in our genome is controlled by many factors, one of which are chemical tags or structural changes ...
NOV 06, 2020
Cell & Molecular Biology
The Structure of Proton-Activated Chloride Channels Is Revealed
NOV 06, 2020
The Structure of Proton-Activated Chloride Channels Is Revealed
Scientists have generated structural images of a newly-described class of ion channels that help maintain the balance of ...
NOV 07, 2020
Genetics & Genomics
How the Suction Cups on Octopus Arms Detect Their Surroundings
NOV 07, 2020
How the Suction Cups on Octopus Arms Detect Their Surroundings
Scientists have taken a close look at the physiology of the octopus, creatures that are ancient and unique. Their arms c ...
NOV 22, 2020
Cell & Molecular Biology
What is ChIP-Seq and Is It Quantitative After All?
NOV 22, 2020
What is ChIP-Seq and Is It Quantitative After All?
ChIP-Seq is a tool for analyzing the interactions between DNA and the proteins that bind to it, which influences gene ac ...
NOV 23, 2020
Genetics & Genomics
Unusual Mutation Acts as a Kind of Gene Therapy
NOV 23, 2020
Unusual Mutation Acts as a Kind of Gene Therapy
Clinicians have identified a patient with a rare inherited disorder that disrupts the production of fresh blood cells, a ...
Loading Comments...