AUG 06, 2017 3:50 PM PDT

New Drug Target for Pathological Pain is Identified

WRITTEN BY: Carmen Leitch

Our nation is facing unprecedented challenges because of chronic pain. As pain relievers were made to be more and more powerful, there were unforeseen consequences from medicating so many people with really strong opiates. That is only one reason researchers have long been searching for alternative ways to treat pain, a search that’s becoming a more pressing issue. New work published in PLOS Biology presents a potential new target for the treatment of pain - phosphorylation outside of the cell.

Researchers may have found a new way to treat pain. / Credit: Pixabay

As chemicals send signals in our body to carry out cellular function, one way messages are sent is through small modifications to proteins. One such modification is phosphorylation, in which an enzyme adds a phosphate group to an amino acid residue of a molecule. That alteration can change the shape of the protein, move the protein to another location, allow it to recruit other proteins, and carry out cell processes.

Phosphorylation is related to neuronal activity and pathological pain. There are several types of pain, like that from a burn or that from an impact. Pathological pain is different from other kinds of pain because it results from a dysfunction in neurons. It results in sensations of pain even when no hurtful stimulus is occurring, or a painful state that is maintained long after a painful event.

"Although we have yet to discover the exact mechanism that causes this modification, this finding offers both a target for developing new treatments and a strong new tool for studying synapses in general,” noted Matthew Dalva. He is Professor and Vice Chair in the Department of Neuroscience at The Vickie and Jack Farber Institute for Neuroscience of Sidney Kimmel Medical College, Thomas Jefferson University.

While it’s known that NMDA receptors have a critical role in pathological pain, they also are important to memory and learning; as such they are not good targets for drug interference. The researchers had to find another starting point.

Working with investigators at New York University and the University of Texas at Dallas, the team identified another receptor, ephrin B or EphB2, which gets phosphorylated outside of neurons in response to painful stimuli.

The EphB2 receptor can bind to the NMDA receptor, which modifies the NMDA receptor and pushes it into the synaptic space, a critical junction between nerve cells. The result is an increase in sensitivity to pain. Investigating further, they found by using a chemical that interferes with the EphB2 and NMDA receptor interaction, pain could be blocked.

"Because the protein modification that initiates nerve sensitivity to pain occurs outside of the cell, it offers us an easier target for drug development," Dalva explained. "This is a promising advance in the field of pain management."

 

Sources: UPI via Thomas Jefferson University, PLOS Biology

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 13, 2020
Cell & Molecular Biology
RNA Found on the Surface of Human Cells
SEP 13, 2020
RNA Found on the Surface of Human Cells
The surface of a cell carries many features to help it carry out its functions, communicate with other cells, gather inf ...
SEP 13, 2020
Genetics & Genomics
Men and Women Express Many Genes at Different Levels
SEP 13, 2020
Men and Women Express Many Genes at Different Levels
Most humans carry the same genes in their genome, but how are genes expressed differently in men and women?
OCT 14, 2020
Neuroscience
Researchers Pinpoint Neurons Affected by Epilepsy
OCT 14, 2020
Researchers Pinpoint Neurons Affected by Epilepsy
Video: Explains in more detail the different receptors affected by epilepsy. Researchers at the University of Copenhagen ...
OCT 26, 2020
Cell & Molecular Biology
When Exposed to Estrogen, Fish Generate Fewer Males
OCT 26, 2020
When Exposed to Estrogen, Fish Generate Fewer Males
Life on earth relies on clean water, something that is becoming more scarce. Researchers have found that if water is con ...
NOV 03, 2020
Cell & Molecular Biology
The Connections Between Toxins, Genes, and Disease
NOV 03, 2020
The Connections Between Toxins, Genes, and Disease
We are exposed to a vast array of chemicals every day. Many are harmless or even important, like the air we breathe, wat ...
NOV 19, 2020
Cell & Molecular Biology
A Different View of Chromosomes
NOV 19, 2020
A Different View of Chromosomes
Many of us are familiar with typical diagrams of a chromosome, which is usually drawn like a stubby X. While that pictur ...
Loading Comments...