AUG 06, 2017 3:50 PM PDT

New Drug Target for Pathological Pain is Identified

WRITTEN BY: Carmen Leitch

Our nation is facing unprecedented challenges because of chronic pain. As pain relievers were made to be more and more powerful, there were unforeseen consequences from medicating so many people with really strong opiates. That is only one reason researchers have long been searching for alternative ways to treat pain, a search that’s becoming a more pressing issue. New work published in PLOS Biology presents a potential new target for the treatment of pain - phosphorylation outside of the cell.

Researchers may have found a new way to treat pain. / Credit: Pixabay

As chemicals send signals in our body to carry out cellular function, one way messages are sent is through small modifications to proteins. One such modification is phosphorylation, in which an enzyme adds a phosphate group to an amino acid residue of a molecule. That alteration can change the shape of the protein, move the protein to another location, allow it to recruit other proteins, and carry out cell processes.

Phosphorylation is related to neuronal activity and pathological pain. There are several types of pain, like that from a burn or that from an impact. Pathological pain is different from other kinds of pain because it results from a dysfunction in neurons. It results in sensations of pain even when no hurtful stimulus is occurring, or a painful state that is maintained long after a painful event.

"Although we have yet to discover the exact mechanism that causes this modification, this finding offers both a target for developing new treatments and a strong new tool for studying synapses in general,” noted Matthew Dalva. He is Professor and Vice Chair in the Department of Neuroscience at The Vickie and Jack Farber Institute for Neuroscience of Sidney Kimmel Medical College, Thomas Jefferson University.

While it’s known that NMDA receptors have a critical role in pathological pain, they also are important to memory and learning; as such they are not good targets for drug interference. The researchers had to find another starting point.

Working with investigators at New York University and the University of Texas at Dallas, the team identified another receptor, ephrin B or EphB2, which gets phosphorylated outside of neurons in response to painful stimuli.

The EphB2 receptor can bind to the NMDA receptor, which modifies the NMDA receptor and pushes it into the synaptic space, a critical junction between nerve cells. The result is an increase in sensitivity to pain. Investigating further, they found by using a chemical that interferes with the EphB2 and NMDA receptor interaction, pain could be blocked.

"Because the protein modification that initiates nerve sensitivity to pain occurs outside of the cell, it offers us an easier target for drug development," Dalva explained. "This is a promising advance in the field of pain management."

 

Sources: UPI via Thomas Jefferson University, PLOS Biology

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 09, 2021
Genetics & Genomics
Another Neurodevelopmental Disorder is Discovered
MAY 09, 2021
Another Neurodevelopmental Disorder is Discovered
Researchers are identifying more rare disorders because of advances in genetic sequencing technologies, which have made ...
MAY 17, 2021
Genetics & Genomics
Diagramming Connections in the Brain with Barcodes
MAY 17, 2021
Diagramming Connections in the Brain with Barcodes
The billions of neurons in the brain form a complex network, as shown in this image from CSHL scientists Xiaoyin Chen an ...
MAY 19, 2021
Drug Discovery & Development
Combination Immunotherapy Shows Promise in Treating HIV
MAY 19, 2021
Combination Immunotherapy Shows Promise in Treating HIV
  Researchers have found that a new combination immunotherapy, alongside antiretroviral therapy (ART), is effective ...
MAY 24, 2021
Cell & Molecular Biology
Animal Trial of Asthma Vaccine Has Positive Results
MAY 24, 2021
Animal Trial of Asthma Vaccine Has Positive Results
Asthma is thought to affect 340 million people. A type of asthma that happens when allergens like dust mites are inhaled ...
MAY 24, 2021
Cardiology
Heart Organoids with a Contracting Chamber are Created
MAY 24, 2021
Heart Organoids with a Contracting Chamber are Created
Scientists that study human disease have long had to rely on animal models or cell culture platforms in which cells grew ...
JUN 11, 2021
Cell & Molecular Biology
Bad Fat in the Tumor Microenvironment May Disrupt Killer T Cells
JUN 11, 2021
Bad Fat in the Tumor Microenvironment May Disrupt Killer T Cells
The immune system can detect and destroy pathogenic and cancerous cells, but sometimes those dangerous cells can evade t ...
Loading Comments...