APR 02, 2018 5:06 PM PDT

Cracking the Eggshell's Structural Mysteries

WRITTEN BY: Carmen Leitch

Eggshells are a marvel of nature; they can resist breakage by outside forces, yet will easily crack open from the inside as a chick hatches. Scientists at McGill University have learned that the trick lies in the nanostructure of the eggshell. The perfect shell has evolved over millions of years, now this new work, reported in Science Advances, could help improve food safety.

Living tissue can make minerals, and subsequently stiffen up, in a process called biomineralization; eggshells are a biomineralized chamber that holds nutrients and protects chick embryos as they develop. Researchers wanted to know where these unique characteristics came from and utilized new procedures in sample preparation to analyze the eggshell’s interior. They wanted to get a look at the mechanical properties and molecular features.

"Eggshells are notoriously difficult to study by traditional means because they easily break when we try to make a thin slice for imaging by electron microscopy," explained McKee, a professor in McGill's Department of Anatomy and Cell Biology. "Thanks to a new focused-ion beam sectioning system recently obtained by McGill's Facility for Electron Microscopy Research, we were able to accurately and thinly cut the sample and image the interior of the shell."

Minerals and many proteins make up eggshells, including osteopontin, a protein also found in bone. The first author of this work, graduate student Dimitra Athanasiadou, found that a critical component of shell strength is a nanostructured mineral that is associated with osteopontin. 

Over their short lifetimes though, bird eggshells change their strength. For example, they get thinner and weaker before hatching begins. Now, researchers investigating eggshell structure have zeroed in on the fine structure and mechanical properties of chicken eggshells, and shell changes associated with chick hatching. / Credit: Carla Schaffer/ AAAS

The investigators also learned more about chick development during their study. A growing chick needs calcium to make bones; the interior of the eggshell dissolves as the chick develops, providing it with a supply of minerals. That process also weakens the structure of the shell, so that it can eventually be broken open by the chick.
 
The scientists and collaborators then used a variety of imaging methods to investigate that reciprocal relationship. Atomic force microscopy, X-ray and electron analysis techniques showed that tiny changes in the nanostructure of the shell make this process possible during the incubation of an egg.

Additional work indicated that a nanostructure similar to what they found could be recreated in the lab by adding osteopontin to growing mineral crystals.

Professor McKee suggested that a better understanding of how proteins function in calcification events that promote the hardening and strengthening of eggshells through biomineralization may have critical implications for food safety.

Eggshells have the integrity to protect a developing chick, but will crack when it's ready. / Image credit: Pixabay

"About ten to twenty percent of chicken eggs break or crack, which increases the risk of Salmonella poisoning," said McKee. "Understanding how mineral nanostructure contributes to shell strength will allow for selection of genetic traits in laying hens to produce consistently stronger eggs for enhanced food safety."


Sources: AAAS/Eurekalert! via McGill University, Science Advances

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 17, 2020
Immunology
Nervous Protein Neuromedin B May Prevent Immune Reactivity
AUG 17, 2020
Nervous Protein Neuromedin B May Prevent Immune Reactivity
A protein produced by the nervous system seems to play a role in regulating the immune system. For people with inflammat ...
AUG 26, 2020
Cell & Molecular Biology
Levels of RNA Transcripts From 'Junk' DNA Get Higher as We Age
AUG 26, 2020
Levels of RNA Transcripts From 'Junk' DNA Get Higher as We Age
There is a lot more to the genome than just genes that code for proteins.
OCT 11, 2020
Cell & Molecular Biology
Newly-Found Molecules May Treat Neurodegeneration
OCT 11, 2020
Newly-Found Molecules May Treat Neurodegeneration
The NMDA receptor is known to play a crucial role in memory, and synaptic plasticity - where neurons change, altering ne ...
OCT 18, 2020
Cell & Molecular Biology
Small RNA is Connected to Bacterial Pathogenicity
OCT 18, 2020
Small RNA is Connected to Bacterial Pathogenicity
It's thought that as much as half of the global population carries a bacterium called Helicobacter pylori in their stoma ...
OCT 22, 2020
Cell & Molecular Biology
How a Gene Variant Raises the Risk of Multiple Sclerosis
OCT 22, 2020
How a Gene Variant Raises the Risk of Multiple Sclerosis
Now that sequencing the whole human genome is easier, faster, and cheaper than it used to be, scientists have been able ...
OCT 25, 2020
Cell & Molecular Biology
Revealing More About the Genetics of Ewing Sarcoma
OCT 25, 2020
Revealing More About the Genetics of Ewing Sarcoma
Ewing sarcoma is a rare kind of cancer that tends to impact young people and occurs in bones or the tissue around them. ...
Loading Comments...