APR 29, 2015 12:18 PM PDT

Steps Closer to the Alchemy of Changing Blood Types

WRITTEN BY: Judy O'Rourke
What to do when a patient needs a blood transfusion but you don't have their blood type in the blood bank? It's a problem scientists have been trying to solve for years but haven't been able to find an economic solution-until now.

University of British Columbia chemists and scientists in the Centre for Blood Research have created an enzyme that could potentially solve the problem. The enzyme works by snipping off the sugars, also known as antigens, found in Type A and Type B blood, making it more like Type O. Type O blood is known as the universal donor and can be given to patients of all blood types.

"We produced a mutant enzyme that is very efficient at cutting off the sugars in A and B blood, and is much more proficient at removing the subtypes of the A-antigen that the parent enzyme struggles with," says David Kwan, lead author of the study and a postdoctoral fellow in the Department of Chemistry.

The defining difference between A, B, and O blood types is the presence of slightly different sugar structures on the outside of the red blood cells of each type. Type A and B blood cells each have a single additional sugar attached to their surface.

To create this high-powered enzyme capable of snipping off sugars, researchers used a new technology called directed evolution that involves inserting mutations into the gene that codes for the enzyme, and selecting mutants that are more effective at cutting the antigens. In just five generations, the enzyme became 170 times more effective.

With this enzyme, UBC associate professor Jayachandran Kizhakkedathu and colleagues in the Centre for Blood Research were able to remove the wide majority of the antigens in Type A and B blood. But before it can be used in clinical settings, the enzyme used would need to remove all of the antigens. The immune system is highly sensitive to blood groups and even small amounts of residual antigens could trigger an immune response.

"The concept is not new but until now we needed so much of the enzyme to make it work that it was impractical," says Steve Withers, professor, Department of Chemistry. "Now I'm confident that we can take this a whole lot further."

The study, titled "Toward Efficient Enzymes for the Generation of Universal Blood through Structure-Guided Directed Evolution," is published in the Journal of the American Chemical Society.

[Source: The University of British Columbia]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
DEC 19, 2020
Chemistry & Physics
Advanced Chemistry Module to Aid Future Mars Exploration
DEC 19, 2020
Advanced Chemistry Module to Aid Future Mars Exploration
Despite its resemblance to Earth, Mars, our planetary neighbor, is not exactly a friendly environment for human explorer ...
DEC 27, 2020
Chemistry & Physics
The Coolest Molecules of 2020
DEC 27, 2020
The Coolest Molecules of 2020
2020 was a chaotic, stressful year for most, but it did not stop innovative ideas and creative scientific thinking from ...
JAN 11, 2021
Chemistry & Physics
Improving our understanding of aerosol nucleation
JAN 11, 2021
Improving our understanding of aerosol nucleation
New research published in Science Advances documents for the first time ever the early processes of aerosol formation. A ...
JAN 21, 2021
Chemistry & Physics
Making the making of ammonia "green"
JAN 21, 2021
Making the making of ammonia "green"
For decades, economists and chemists alike have been dreaming of a hydrogen economy, where hydrogen fuels our global pow ...
JAN 23, 2021
Chemistry & Physics
Exploring ceramic omnidirectional bioprinting in cell-suspensions
JAN 23, 2021
Exploring ceramic omnidirectional bioprinting in cell-suspensions
A new technique known as ceramic omnidirectional bioprinting in cell-suspensions (COBICS) may allow surgeons of the futu ...
MAR 18, 2021
Microbiology
How to Avoid Greenwashing Your Lab
MAR 18, 2021
How to Avoid Greenwashing Your Lab
Greenwashing is a term used to describe an intentionally-misleading or false claim about the environmental benefits of a ...
Loading Comments...