JUL 26, 2019 9:57 AM PDT

ALICE Collaboration Cooks Up Hot "Quark-Gluon Soup"

Lead-ion collisions recorded on the ALICE detector (CERN)

In a recent report, scientists at CERN's ALICE experiment announced that they conducted the first-ever measurement of the bottomonium, a type of exotic particles generated by smashing lead (Pb) ions.

So what are the bottomonium and why are scientists after them?

Let's start with neutrons and protons, the basic components of the atomic nucleus. They are made of even smaller particles known as quarks and gluons. These days, physicists can pick apart the nucleus and get pure protons and neutrons, but never quarks and gluons because the current universe is way too "cold" for the two types of elementary particles to be freed from each other.

Dialing back the clock to a few millionths of a second after the Big Bang, however, things were drastically different back then. The universe was so dense and hot that the quarks and gluons could exist freely in the soup-like quark-gluon plasma. 

Researchers at the ALICE experiment have been recreating the quark-gluon soup by smashing Pb ions together. These ions are much more massive than protons, the particles that are often smashed inside the Large Hadron Collider (LHC). Hence the name "A Large Ion Collider Experiment". A heavy atom like Pb has more neutron and proton (126 and 82 for the stable isotope Pb-208). Therefore, more quarks and gluons are expected to be knocked out of its nucleus during the collision.

Flying over ALICE (ALICE/CERN)

Since there's no direct way to probe the plasma, scientists needed to use the bottomonium, a signature entity created right after the collision, as an indication. The collective motion (or flow) of the bottomonium provides scientists a lot of information about the evolution of the quark-gluon plasma. 

By observing the pairs of muons, the decayed products of bottomonium, the ALICE team was able to determine the flow of these plasma-born particles, which exhibits an elliptic shape, as a result from non-"head on" collisions. 

Through further exploring this elliptic flow of the bottomonium particles, scientists hope that they can gain more insight into the infancy of our universe.

This latest research was presented in the Annual Conference on High Energy Physics organized by the European Physical Society.
 
Source: ZME Science

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
OCT 10, 2019
Cell & Molecular Biology
OCT 10, 2019
Light Therapy Developed for Treating Carbon Monoxide Poisoning
According to the Centers for Disease Control and Prevention, everyone is at risk from carbon monoxide (CO) poisoning....
OCT 23, 2019
Chemistry & Physics
OCT 23, 2019
Is the Milky Way Too "Gassy"?
Astrophysicists have long thought that our home galaxy the Milky Way has been constantly losing mass due to the escape of hydrogen gas. However, by observi...
NOV 06, 2019
Chemistry & Physics
NOV 06, 2019
Radioactive Spill? Self-propelled Microbots to the Rescue
Scientists have been looking for an effective method to clean up radioactive elements in industrial wastewater and accidental spill, to support and boost t...
DEC 04, 2019
Cancer
DEC 04, 2019
Photon up-conversion for new cancer treatments
Scientists from the University of California, Riverside and The University of Texas at Austin have made a breakthrough in materials science that has signif...
JAN 13, 2020
Space & Astronomy
JAN 13, 2020
Lunar Dust is Actually Quite Dangerous to Humans
Most people have a tendency to think that lunar dust isn’t any different than the dirt found here on Earth, but quite the opposite is true. In fact,...
JAN 16, 2020
Chemistry & Physics
JAN 16, 2020
High-speed 3D Printer to Revolutionize Manufacturing
Two significant hurdles in front of the fast expansion of three-dimensional (3D) printers are speed and scale.  In a recently published study, a team...
Loading Comments...