MAR 25, 2020 5:31 AM PDT

The Kondo screening cloud, in all its glory

We knew it existed; we just never saw it before.

No, I’m not talking about the Easter Bunny, rather the quantum phenomenon known as a Kondo screening cloud! The Kondo effect, named after Jun Kondo, describes the scattering of conduction electrons in a metal due to magnetic impurities, resulting in a characteristic change in electrical resistivity with temperature. That resulting change in electrical resistivity forms a cloud that has been known to theoretically extend several micrometers, however until now the physical evidence of its existence has yet to be demonstrated. But new research published recently in Nature presents experimental evidence of a Kondo cloud, thus culminating a fifty-year mission in pursuit of this rare phenomenon.

During the last five decades, physicists have attempted to demonstrate the Kondo cloud using nuclear magnetic resonance and scanning tunneling microscopy, yet to no avail. Despite many attempts, scientists have not been able to show the cloud’s signature at more than a distance of less than one nanometer. Given that the cloud has been mathematically predicted to extend over microns, a shown cloud length of less than a nanometer is comparably insignificant. Now all that has changed.

Theorist Heung-Sun Sim of KAIST commented, "The observed spin cloud is a micrometer-size object that has quantum mechanical wave nature and entanglement. This is why the spin cloud has not been observed despite a long search. It is remarkable in a fundamental and technical point of view that such a large quantum object can now be created, controlled, and detected."

Using an interferometer in a quantum dot, researchers of the new study were able to show how a localized electron spin coupled to quasi-one-dimensional conduction electrons created a Kondo cloud. Furthermore, the researchers proved that the cloud's size and shape were in line with theoretical calculations and that the length and shape of the cloud are scaled by the inverse of the Kondo temperature.

"Thus, we were able experimentally to confirm the original theoretical prediction of the Kondo cloud length which is on the order of micrometers," said Ivan Borzenets of the City University of Hong Kong, who performed the experimental measurements.

Photo: Pixabay

The Kondo effect is crucial for physical phenomena such as high-temperature superconductivity in materials like Kondo lattices, spin glasses, and high-temperature superconductors. Michihisa Yamamoto of the RIKEN Center for Emergent Matter Science (CEMS) led the international collaboration behind the experiments and commented, "It is very satisfying to have been able to obtain real space image of the Kondo cloud, as it is a real breakthrough for understanding various systems containing multiple magnetic impurities. This achievement was only made possible by close collaboration with theorists. The size of the Kondo cloud in semiconductors was found to be much larger than the typical size of semiconductor devices. This means that the cloud can mediate interactions between distant spins confined in quantum dots, which is a necessary protocol for semiconductor spin-based quantum information processing. This spin-spin interaction mediated by the Kondo cloud is unique since both its strength and sign (two spins favor either parallel or anti-parallel configuration) are electrically tunable, while conventional schemes cannot reverse the sign. This opens up a novel way to engineer spin screening and entanglement."

Sources: Nature, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
MAR 12, 2021
Chemistry & Physics
What we still don't understand about photosynthesis
MAR 12, 2021
What we still don't understand about photosynthesis
Researchers from the University of Leeds and Kobe University in Japan have designed a new method to explore the still-mi ...
MAR 29, 2021
Chemistry & Physics
Converting rubber tires into graphene...to put into cement?
MAR 29, 2021
Converting rubber tires into graphene...to put into cement?
New efforts to make more eco-friendly concrete involve the addition of graphene, according to a study recently published ...
APR 01, 2021
Chemistry & Physics
Analyzing nitrogen dioxide with deep learning
APR 01, 2021
Analyzing nitrogen dioxide with deep learning
Researchers from Penn State are looking to deep learning to act as a method for improving air quality predictions. The r ...
MAY 21, 2021
Space & Astronomy
Alien Radioactive Element Discovered on Earth for First Time
MAY 21, 2021
Alien Radioactive Element Discovered on Earth for First Time
  Researchers from Australian National University have discovered the first ever extraterrestrial radioactive isoto ...
MAY 24, 2021
Chemistry & Physics
Plasma jets observed interacting with magnetic fields in far-off galaxy cluster
MAY 24, 2021
Plasma jets observed interacting with magnetic fields in far-off galaxy cluster
New observations from radio telescopes and supercomputer simulations show plasma jets interacting with magnetic fields i ...
JUN 01, 2021
Chemistry & Physics
"Candy" models allow the visually impaired to visualize complex 3D images with tongue
JUN 01, 2021
"Candy" models allow the visually impaired to visualize complex 3D images with tongue
New research hopes to improve accessibility to science for people who are blind or visually impaired. Approximately 36 m ...
Loading Comments...