OCT 05, 2020 5:36 AM PDT

Improving microbial elecrosynthesis

New research from a KAUST team highlights the development of a semiconductive photocatalyst that recycles CO2 and converts CO2 emissions into commercially-important chemicals through a process called microbial elecrosynthesis. The findings are published in the journal Applied Energy.

Lead researcher Bin Bian explains that there are many technologies that aim to control the bioelectrochemical process that recycles CO2. "Microbial electrosynthesis (MES), coupled with a renewable energy supply, could be one such technology," Bian says.

MES works by taking advantage of some microbes’ ability to take up CO2 and convert it into chemicals like acetate. For example, chemolithoautotroph microbes in nature metabolize minerals as an energy source through the process of shuttling electrons. In MES, microbes are provided with a constant supply of electrons and protons from anodic water splitting in an electrochemical cell in order to continually trigger this metabolization process. The team’s most recent study aimed to decrease the amount of energy required to make this process possible.

"In MES systems, the process that consumes the most energy is believed to be the oxygen evolution reaction (OER)," Bian explains. In order to reduce the energy needed, past studies have attempted using light-capturing anode materials like titanium dioxide to capture energy from the sun to help drive the OER. Bian’s team spun this idea and instead tried implementing the light-harvesting material bismuth vanadate in the photoanode.

Using their bismuth vanadate photocatalyst, the researchers were able to show how absorbing solar energy could help reduce the energy required for MES. "We obtained solar-to-acetate conversion efficiency of 1.65%, which is the highest reported so far," Pascal Saikaly says. "This efficiency is around eight times higher than the 0.2% efficiency of global natural photosynthesis, which is nature's solar-powered process for converting CO2 into energy-rich molecules," Bian adds.

The team was able to demonstrate how bismuth vanadate makes the MES cell system more efficient because it absorbs energy from a much broader range of the solar spectrum than titanium dioxide. "The next step for us is to test our system under real sunlight and monitor the resilience of the biocatalysts under an intermittent renewable energy source," Saikaly says.

Sources: Applied Energy, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
OCT 29, 2020
Chemistry & Physics
Einstein: Gravity? What Gravity?
OCT 29, 2020
Einstein: Gravity? What Gravity?
Try imagining a fictional conversation between Issac Newton and Albert Einstein: "The apple falls toward the ground ...
NOV 12, 2020
Chemistry & Physics
Can a Chemical Be Both Nurturing and Destructive?
NOV 12, 2020
Can a Chemical Be Both Nurturing and Destructive?
On August 4, a megascale explosion almost leveled half of Beirut, the capital city of Lebanon. At the center of the negl ...
NOV 11, 2020
Chemistry & Physics
Bioconductive ink uses the body's own electrical signals to direct how and where neurons grow
NOV 11, 2020
Bioconductive ink uses the body's own electrical signals to direct how and where neurons grow
The development of a new bioconductive ink from researchers in Australia, India, and Bangladesh is reported in the journ ...
DEC 23, 2020
Chemistry & Physics
Fiber optic cables manufactured under pressure reduce signal loss
DEC 23, 2020
Fiber optic cables manufactured under pressure reduce signal loss
New research from Penn State and AGC Inc. in Japan reports that the silica glass used in fiber optic cables would be mor ...
DEC 24, 2020
Chemistry & Physics
Sorbent made from MOF grown on PET absorbs common insecticide
DEC 24, 2020
Sorbent made from MOF grown on PET absorbs common insecticide
A new study published recently in Applied Materials Today details an innovative method of absorbing insecticid ...
DEC 27, 2020
Cell & Molecular Biology
Using Antibodies & Oligonucleotides to Control Specific Reactions
DEC 27, 2020
Using Antibodies & Oligonucleotides to Control Specific Reactions
Antibodies are naturally used by the body to bind targets on pathogens and neutralize them, and these specific interacti ...
Loading Comments...