NOV 15, 2020 8:06 AM PST

Chemical reactivity flowcharts assist chemists in interpreting reaction outcomes

New research published in Organic Letters from Purdue University scientists presents the design and development of chemical reactivity flowcharts that assist chemists in interpreting reaction outcomes. The flowcharts are trained by machine learning models.

"Developing new and fast reactions is essential for chemical library design in drug discovery," said Gaurav Chopra, an assistant professor of analytical and physical chemistry in Purdue's College of Science. "We have developed a new, fast and one-pot multicomponent reaction (MCR) of N-sulfonylimines that was used as a representative case for generating training data for machine learning models, predicting reaction outcomes, and testing new reactions in a blind prospective manner.

"We expect this work to pave the way in changing the current paradigm by developing accurate, human-understandable machine learning models to interpret reaction outcomes that will augment the creativity and efficiency of human chemists to discover new chemical reactions and enhance organic and process chemistry pipelines."

The exciting part of this innovation is that it does not require large-scale robotics, but rather can be used within labs by chemists doing reaction screenings. The team says this means the innovation could be translated to other chemical reactions.

"We provide the first report of a framework to combine fast synthetic chemistry experiments and quantum chemical calculations for understanding reaction mechanism and human-interpretable statistically robust machine learning models to identify chemical patterns for predicting and experimentally testing heterogeneous reactivity of N-sulfonylimines," Chopra said.

The work comes out of a collaboration with the Purdue Research Foundation Office of Technology Commercialization and highlights the wide range of applications for machine learning.

Photo: Pexels

"The unprecedented use of a machine learning model in generating chemical reactivity flowcharts helped us to understand the reactivity of traditionally used different N-sulfonylimines in MCRs," said co-author Krupal Jethava. "We believe that working hand-to-hand with organic and computational chemists will open up a new avenue for solving complex chemical reactivity problems for other reactions in the future."

"In this work, we strived to ensure that our machine learning model can be easily understood by chemists not well versed in this field," said fellow co-author Jonathan Fine. "We believe that these models have the ability not only be used to predict reactions but also be used to better understand when a given reaction will occur. To demonstrate this, we used our model to guide additional substrates to test whether a reaction will occur."

Sources: Organic Letters, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
DEC 07, 2020
Chemistry & Physics
The fluid dynamics of your ride-sharing commute in the age of COVID-19
DEC 07, 2020
The fluid dynamics of your ride-sharing commute in the age of COVID-19
A team of scientists from Brown University has attempted to understand the potential of COVID-19 transmission within the ...
FEB 19, 2021
Chemistry & Physics
Ultraviolet TV for animals - and what it can teach us
FEB 19, 2021
Ultraviolet TV for animals - and what it can teach us
Does your dog like watching TV with you? Chances are probably not, because dogs’ eyes see light much faster than h ...
MAR 07, 2021
Cell & Molecular Biology
Why Are Egg Cells So Large?
MAR 07, 2021
Why Are Egg Cells So Large?
If you've ever seen a video of a sperm cell fertilizing an egg cell, you've probably noticed the huge size difference. T ...
MAR 10, 2021
Chemistry & Physics
Where does the energy go in singlet fission?
MAR 10, 2021
Where does the energy go in singlet fission?
New research from scientists at Linköping University, Sweden, describes a recent discovery revealing where the ener ...
APR 07, 2021
Chemistry & Physics
New developments in highly-effective cobalt catalysts
APR 07, 2021
New developments in highly-effective cobalt catalysts
In a new study published in JACS Au, Osaka University researchers report having developed a single-crystal cobalt phosph ...
APR 19, 2021
Chemistry & Physics
Breaking down the mathematical laws of forests
APR 19, 2021
Breaking down the mathematical laws of forests
Researchers from the Santa Fe Institute (SFI) have published a new study in the Proceedings of the National Academy of S ...
Loading Comments...