JAN 06, 2016 8:44 AM PST

Could acid in aspirin fight Alzheimer's?

Scientists are taking a closer look at the main breakdown product of aspirin, called salicylic acid, and its potential to treat neurodegenerative diseases, such as Alzheimer’s and Parkinson’s.

Salicylic acid binds to an enzyme called GAPDH, which is believed to play a major role in such diseases. The acid stops the enzyme from from moving into a cell’s nucleus, where it can trigger the cell’s death.
 
Salicylic acid, which is found in aspirin, appears to stop an enzyme called GAPDH from causing cells to die.


Daniel Klessig, a professor at Boyce Thompson Institute and Cornell University, has studied the actions of salicylic acid for many years, but primarily in plants. Salicylic acid is the critical hormone for regulating the plant immune system. Previous studies have identified several targets in plants that are affected by salicylic acid, and many of these targets have equivalents in humans.

In the new study published in PLOS ONE, the researchers performed high-throughput screens to identify proteins in the human body that bind to salicylic acid.

GAPDH (Glyceraldehyde 3-Phosphate Dehydrogenase) is a central enzyme in glucose metabolism, but plays additional roles in the cell. Under oxidative stress—an excess of free radicals and other reactive compounds—GAPDH is modified and then enters the nucleus of neurons, where it enhances protein turnover, leading to cell death.

The anti-Parkinson’s drug deprenyl blocks GAPDH’s entry into the nucleus and the resulting cell death. The researchers discovered that salicylic acid also is effective at stopping GAPDH from moving into the nucleus, thus preventing the cell from dying.

The enzyme GAPDH, long thought to function solely in glucose metabolism, is now known to participate in intracellular signaling,” says study coauthor Solomon Snyder, professor of neuroscience at Johns Hopkins University. “The new study establishes that GAPDH is a target for salicylate drugs related to aspirin, and hence may be relevant to the therapeutic actions of such drugs.”

The researchers also found that a natural derivative of salicylic acid from the Chinese medical herb licorice and a lab-synthesized derivative bind to GAPDH more tightly than salicylic acid. Both are more effective than salicylic acid at blocking GAPDH’s movement into the nucleus and the resulting cell death.

Earlier this year, Klessig’s group identified another novel target of salicylic acid called HMGB1 (High Mobility Group Box 1), which causes inflammation and is associated with several diseases, including arthritis, lupus, sepsis, atherosclerosis, and certain cancers.

Low levels of salicylic acid block these pro-inflammatory activities, and the above mentioned salicylic acid derivatives are 40 to 70 times more potent than salicylic acid at inhibiting these pro-inflammatory activities.

“A better understanding of how salicylic acid and its derivatives regulate the activities of GAPDH and HMGB1, coupled with the discovery of much more potent synthetic and natural derivatives of salicylic acid, provide great promise for the development of new and better salicylic acid-based treatments of a wide variety of prevalent, devastating diseases,” says Klessig.

The National Science Foundation and US Public Health Service funded the study.

Originally published on futurity.org
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
MAR 08, 2020
Space & Astronomy
MAR 08, 2020
2020 Has a Lot of Martian Missions in Store
Space agencies typically send missions to Mars once every several years, depending on the need for scientific exploratio ...
MAR 16, 2020
Space & Astronomy
MAR 16, 2020
What Would it Take to Visit Alpha Centauri?
Humankind has long pondered upon the ambition of becoming a multiplanetary species. While much of our realistic focus re ...
APR 27, 2020
Chemistry & Physics
APR 27, 2020
Electrospray deposition offers better coating method for 3D-printed objects
New research published in the journal ACS Applied Materials & Interfaces details a more efficient mechanism for pain ...
MAY 11, 2020
Chemistry & Physics
MAY 11, 2020
New development in soft robotics
Soft material robotics are often more resilient and adaptable than conventional robotics, but there is one shortcoming - ...
MAY 18, 2020
Chemistry & Physics
MAY 18, 2020
Understanding the movement of Martian mars
New research led by scientists from the Institute of Geophysics at the Czech Academy of Sciences describes the latest fi ...
MAY 21, 2020
Chemistry & Physics
MAY 21, 2020
The Nature of Glass Still Dumbfounds Scientists
There are many things we humans have come to perfect, but don't yet fully understand. Take glass for example, scientists ...
Loading Comments...