APR 06, 2018 5:38 PM PDT

Canada Says Goodbye to NRU

WRITTEN BY: Daniel Duan

The National Research Universal Reactor at Chalk River. Credit: Canadian Nuclear Laboratories

The last day of March marked the permanent shutdown of the National Research Universal (NRU) reactor, an old-time symbol of Canada's atom-age.

The Chalk River, Ontario-based facility went into service on November 3, 1957, as the country’s second functional reactor. Although planned and built during the Second World War, it was only used civil purpose in the post-war era.

For more than five decades, NRU has played a key role in advancing nuclear science, technology and the quality of life for Canadians and people around the globe. It has served three main purposes: providing engineering R & D support for the CANDU technology (Canadian reactor with pressurized heavy water design), supplying industrial and medical radioisotopes, fostering Canadian neutron physics research, and.

For several decades, the NRU served as the test bed for the development of Canada’s own nuclear technology, especially for a fleet of reactors that are the major workhorses for the country’s power generation.

The reactor itself became a globally dominant supplier of radioisotopes—in particular, molybdenum-99 (Mo-99). Mo-99 is the parent isotope of technetium-99m (Tc-99m), one of the most versatile medical isotopes. Used in more than 80 percent of all nuclear medicine procedures, Tc-99m plays an important role in the non-invasive diagnosis of many medical conditions in cardiology, neurology, and oncology. Due to their short half-life, 66 hours for Mo-99, and 6 hours for Tc-99m, stockpiling of either isotope is impossible. Instead, molybdenum is being produced around the clock worldwide so nuclear medicine doctors can perform diagnostic scans.

This dependence on a single source for such a vital commodity became problematic by the 1990s when Atomic Energy of Canada Limited, the administrative body that oversees the operation of NRU, began to consider about retiring the aging reactor, while constructing a pair of new, more technically advanced reactors. Regrettably, the two replacement units, Multipurpose Applied Physics Lattice Experiment (or MAPLE) reactors, failed to come online due to the innate technical issue, leading to their complete abandonment by 2008.

When a water leak caused by corrosion unexpectedly took the NRU offline later that same year, the global medical radioisotope community scrambled to deal with the shortfall. It was allowed to operate for ten more years despite its fast aging, in part to allow other sources of the medical commodity to come online.

The reactor also produces high-energy neutron beams as a by-product of uranium fission reactions. Neutron’s neutral charge makes it a powerful tool to penetrate dense materials. Led by Bertram Brockhouse, a physicist who would go on to win a share of the 1994 Nobel prize in physics for his development of neutron scattering techniques, NRU became the national center for neutron beam research.

Canadian scientists and their collaborators at the center have studied many kinds of materials that underlie advances in scientific, industrial and medical fields. Past projects included the development of light metals to reduce vehicle emissions for internal combustion engines, analysis of nuclear power plant components to improve reliability and safety, measurement of the hydrogen storage capacity of materials to support a shift to hydrogen-powered transport, development of targeted nanoparticles to enhance drug treatments, and many more.

Some scientists worry this body of talent and experience is all too likely to disperse permanently after NRU shutdown, which will leave many researchers and organizations at an important crossroads. Users will be forced to look further for time slot and research facility, such as the Spallation Neutron Source, the flagship U.S. neutron beam facility at Oak Ridge National Laboratory in Tennessee.

Closure of the NRU reactor. Credit: Canadian Nuclear Laboratories

Source: CBC/Science/Canadian Nuclear Laboratories

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
MAR 06, 2020
Chemistry & Physics
MAR 06, 2020
Father of the Dyson Sphere Passed Away
Last Friday, February 28, 2020, the world said goodbye to Freeman Dyson, was a British American physicist and mathematic ...
MAR 30, 2020
Space & Astronomy
MAR 30, 2020
If Gravity Has Mass, This Could Explain Dark Energy
The Big Bang purportedly transpired 13.8 billion years ago, and even so, the universe continues to expand even today. Bu ...
APR 15, 2020
Chemistry & Physics
APR 15, 2020
Could this drug help people with SAD?
Have you ever been sad in the winter? If so, you’re not alone. Medaka fish feel it too. Seasonal affective disorde ...
APR 26, 2020
Space & Astronomy
APR 26, 2020
Can Planets Be Larger Than Their Host Stars?
When you look at the confines of our solar system and notice just how large the Sun is when compared to Jupiter, the lar ...
MAY 05, 2020
Space & Astronomy
MAY 05, 2020
How Much Do You Know About the Moon?
There are literally dozens upon dozens of natural satellites orbiting the planets in our solar system, but only one of t ...
MAY 25, 2020
Plants & Animals
MAY 25, 2020
Ever Wonder How Some Fish Produce Electricity?
When you hear the term ‘electric fish,’ the first thing that probably comes to mind is the infamous electric ...
Loading Comments...